[1] ROUNDY, S., WRIGHT, P. K., and RABAEY, J. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131-1144(2003) [2] DAQAQ, M. F., MASANA, R., ERTURK, A., and QUINN, D. D. On the role of nonlinearities in vibratory energy harvesting:a critical review and discussion. Applied Mechanics Reviews, 66(4), 045501(2014) [3] ZOU, H. X., ZHAO, L. C., GAO, Q. H., ZUO, L., LIU, F. R., TAN, T., WEI, K. X., and ZHANG, W. M. Mechanical modulations for enhancing energy harvesting:principles, methods and applications. Applied Energy, 255, 113871(2019) [4] WANG, J., GENG, L., DING, L., ZHU, H., and YURCHENKO, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267, 114902(2020) [5] LALLART, M., WANG, L., and PETIT, L. Enhancement of electrostatic energy harvesting using self-similar capacitor patterns. Journal of Intelligent Material Systems and Structures, 27(17), 2385-2394(2016) [6] PEREZ, M., BOISSEAU, S., GASNIER, P., WILLEMIN, J., GEISLER, M., and REBOUD, J. L. A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications. Smart Materials and Structures, 25(4), 045015(2016) [7] ZHANG, Y., WANG, T., ZHANG, A., PENG, Z., LUO, D., CHEN, R., and WANG, F. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Review of Scientific Instruments, 87(12), 125001(2016) [8] LI, X., ZHANG, Y., DING, H., and CHEN, L. Integration of a nonlinear energy sink and a piezoelectric energy harvester. Applied Mathematics and Mechanics (English Edition), 38(7), 1019-1030(2017) https://doi.org/10.1007/s10483-017-2220-6 [9] GUO, X. Y., JIANG, P., ZHANG, W., YANG, J., KITIPORNCHAI, S., and SUN, L. Nonlinear dynamic analysis of composite piezoelectric plates with graphene skin. Composite Structures, 206, 839-852(2018) [10] CAO, D., GUO, X., and HU, W. A novel low-frequency broadband piezoelectric energy harvester combined with a negative stiffness vibration isolator. Journal of Intelligent Material Systems and Structures, 30(7), 1105-1114(2019) [11] LU, Z. Q., DING, H., and CHEN, L. Q. Resonance response interaction without internal resonance in vibratory energy harvesting. Mechanical Systems and Signal Processing, 121, 767-776(2019) [12] ZHOU, S. X., CAO, J. Y., INMAN, D. J., LIN, J., LIU, S. S., and WANG, Z. Z. Broadband tristable energy harvester:modeling and experiment verification. Applied Energy, 133, 33-39(2014) [13] LIU, D., XU, Y., and LI, J. L. Randomly-disordered-periodic-induced chaos in a piezoelectric vibration energy harvester system with fractional-order physical properties. Journal of Sound and Vibration, 399, 182-196(2017) [14] LAI, S. K., WANG, C., and ZHANG, L. H. A nonlinear multi-stable piezomagnetoelastic harvester array for low-intensity, low-frequency, and broadband vibrations. Mechanical Systems and Signal Processing, 122, 87-102(2019) [15] ZHANG, L., XU, X., HAN, Q., QIN, Z., and CHU, F. Energy harvesting of beam vibration based on piezoelectric stacks. Smart Materials and Structures, 28(12), 125020(2019) [16] MORGADO, M. L., MORGADO, L. F., SILVA, N., and MORAIS, R. Mathematical modelling of cylindrical electromagnetic vibration energy harvesters. International Journal of Computer Mathematics, 92(1), 101-109(2014) [17] MOSS, S. D., PAYNE, O. R., HART, G. A., and UNG, C. Scaling and power density metrics of electromagnetic vibration energy harvesting devices. Smart Materials and Structures, 24(2), 023001(2015) [18] WANG, W., CAO, J., ZHANG, N., LIN, J., and LIAO, W. H. Magnetic-spring based energy harvesting from human motions:design, modeling and experiments. Energy Conversion and Management, 132, 189-197(2017) [19] DENG, Q., KAMMOUN, M., ERTURK, A., and SHARMA, P. Nanoscale flexoelectric energy harvesting. International Journal of Solids and Structures, 51(18), 3218-3225(2014) [20] LIANG, X., HU, S., and SHEN, S. Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Materials and Structures, 26(3), 035050(2017) [21] ANTON, S. R., FARINHOLT, K. M., and ERTURK, A. Piezoelectret foam-based vibration energy harvesting. Journal of Intelligent Material Systems & Structures, 25(14), 1681-1692(2014) [22] ZHANG, X., PONDROM, P., SESSLER, G. M., and MA, X. Ferroelectret nanogenerator with large transverse piezoelectric activity. Nano Energy, 50, 52-61(2018) [23] KIM, H., PRIYA, S., and UCHINO, K. Modeling of piezoelectric energy harvesting using cymbal transducers. Japanese Journal of Applied Physics, 45(7), 5836-5840(2006) [24] KIM, H. W., BATRA, A., PRIYA, S., UCHINO, K., MARKLEY, D., NEWNHAM, R. E., and HOFMANN, H. F. Energy harvesting using a piezoelectric "cymbal" transducer in dynamic environment. Japanese Journal of Applied Physics, 43(9A), 6178-6183(2004) [25] LI, X., GUO, M., and DONG, S. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(4), 698-703(2011) [26] MO, C., ARNOLD, D., KINSEL, W. C., and CLARK, W. W. Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting. Journal of Intelligent Material Systems and Structures, 24(7), 828-836(2012) [27] MOURE, A., IZQUIERDO RODRÍGUEZ, M. A., HERNÁNDEZ RUEDA, S., GONZALO, A., RUBIO-MARCOS, F., URQUIZA CUADROS, D., PÉREZ-LEPE, A., and FERNÁNDEZ, J. F. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, 112, 246-253(2016) [28] WANG, X., SHI, Z., WANG, J., and XIANG, H. A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads. Smart Materials and Structures, 25(5), 055005(2016) [29] ZHAO, H., YU, J., and LING, J. Finite element analysis of cymbal piezoelectric transducers for harvesting energy from asphalt pavement. Journal of the Ceramic Society of Japan, 118(1382), 909-915(2010) [30] LING, M., CAO, J., JIANG, Z., and LIN, J. Theoretical modeling of attenuated displacement amplification for multistage compliant mechanism and its application. Sensors and Actuators A:Physical, 249, 15-22(2016) [31] CAO, J., LING, M., INMAN, D. J., and LIN, J. Generalized constitutive equations for piezo-actuated compliant mechanism. Smart Materials and Structures, 25(9), 095005(2016) [32] EVANS, M., TANG, L., and AW, K. C. Modelling and optimisation of a force amplification energy harvester. Journal of Intelligent Material Systems and Structures, 29(9), 1941-1952(2018) [33] WEN, S. and XU, Q. Design of a novel piezoelectric energy harvester based on integrated multistage force amplification frame. IEEE/ASME Transactions on Mechatronics, 24(3), 1228-1237(2019) [34] WEN, S., XU, Q., and ZI, B. Design of a new piezoelectric energy harvester based on compound two-stage force amplification frame. IEEE Sensors Journal, 18(10), 3989-4000(2018) [35] WEN, S. H., WU, Z. H., and XU, Q. S. Design of a novel two-directional piezoelectric energy harvester with permanent magnets and multistage force amplifier. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 67(4), 840-849(2020) [36] CAO, D. X., DUAN, X. J., GUO, X. Y., and LAI, S. K. Design and performance enhancement of a force-amplified piezoelectric stack energy harvester under pressure fluctuations in hydraulic pipeline systems. Sensors and Actuators A:Physical, 309, 112031(2020) [37] CAO, D. X., DING, X. D., GUO, X. Y., and YAO, M. H. Design, simulation and experiment for a vortex-induced vibration energy harvester for low-velocity water flow. International Journal of Precision Engineering and Manufacturing-Green Technology (2020) https://doi.org/10.1007/s40684-020-00265-9 [38] BEN AYED, S., ABDELKEFI, A., NAJAR, F., and HAJJ, M. R. Design and performance of variable-shaped piezoelectric energy harvesters. Intelligent Material Systems and Structures, 25(2), 174-186(2014) [39] MUTHALIF, A. G. A. and NORDIN, N. H. D. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting:modeling, simulation and experimental results. Mechanical Systems and Signal Processing, 54-55, 417-426(2015) |