[1] SOKOLOWSKI-TINTEN, K., BIALKOWSKI, J., CAVALLERI, A., VON DER LINDE, D., OPARIN, A., MEYER-TER-VEHN, J., and ANISIMOV, S. I. Transient states of matter during short pulse laser ablation. Physical Review Letters, 81, 224-227(1988) [2] INOGAMOV, N. A., ANISIMOV, S. I., and RETHFELD, B. Rarefaction wave and gravitational equilibrium in a two-phase liquid-vapor medium. Journal of Experimental and Theoretical Physics, 88, 1143-1150(1999) [3] AGRANAT, M. B., ANISIMOV, S. I., ASHITKOV, S. I., ZHAKHOVSKII, V. V., INOGAMOV, N. A., KOMAROV, P. S., OVCHINNIKOV, A. V., FORTOV, V. E., KHOKHLOV, V. A., and SHEPELEV, V. V. Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses. JETP Letters, 91, 471-477(2010) [4] BASKO, M. M., KRIVOKORYTOV, M. S., VINOKHODOV, A. Y., SIDELNIKOV, Y. V., KRIVTSUN, V. M., MEDVEDEV, V. V., KIM, D. A., KOMPANETS, V. O., LASH, A. A., and KOSHELEV, K. N. Fragmentation dynamics of liquid-metal droplets under ultra-short laser pulses. Laser Physics Letters, 14, 036001(2017) [5] BRENNEN, C. E. Cavitation and Bubble Dynamics, Oxford University Press, New York (1995) [6] UTKIN, A. V., SOSIKOV, V. A., BOGACH, A. A., and FORTOV, V. E. Tension of liquids by shock waves. AIP Conference Proceedings, 706, 765-770(2004) [7] DE RESSÉGUIER, T., SIGNOR, L., DRAGON, A., BOUSTIE, M., ROY, G., and LLORCA, F. Experimental investigation of liquid spall in laser shock-loaded tin. Journal of Applied Physics, 101, 013506(2007) [8] STAN, C. A., WILLMOTT, P. R., STONE, H. A., KOGLIN, J. E., LIANG, M., AQUILA, A. L., ROBINSON, J. S., GUMERLOCK, K. L., BLAJ, G., SIERRA, R. G., BOUTET, S., GUILLET, S. A. H., CURTIS, R. H., VETTER, S. L., LOOS, H., TURNER, J. L., and DECKER, F. J. Negative pressures and spallation in water drops subjected to nanosecond shock waves. The Journal of Physical Chemistry Letters, 7, 2055-2062(2016) [9] COLOMBIER, J. P., COMBIS, P., BONNEAU, F., LE HARZIC, R., and AUDOUARD, E. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Physical Review B, 71, 165406(2005) [10] ZHAO, N., MENTRELLI, A., RUGGERI, T., and SUGIYAMA, M. Admissible shock waves and shock-induced phase transitions in a van der Waals fluid. Physics of Fluids, 23, 086101(2011) [11] BASKO, M. M. Centered rarefaction wave with a liquid-gas phase transition in the approximation of "phase-flip" hydrodynamics. Physics of Fluids, 30, 123306(2018) [12] BLANDER, M. and KATZ, J. L. Bubble nucleation in liquids. AIChE Journal, 21, 833-848(1975) [13] MARTYNYUK, M. M. Phase explosion of a metastable fluid. Combustion, Explosion and Shock Waves, 13, 178-191(1977) [14] SKRIPOV, V. P. and SKRIPOV, A. V. Spinodal decomposition (phase transitions via unstable states). Soviet Physics Uspekhi, 22, 389-410(1979) [15] FAIK, S., BASKO, M. M., TAUSCHWITZ, A., IOSILEVSKIY, I., and MARUHN, J. A. Dynamics of volumetrically heated matter passing through the liquid-vapor metastable states. High Energy Density Physics, 8, 349-359(2012) [16] GRADY, D. E. Spall and fragmentation in high-temperature metals. High Pressure Shock Compression of Solids II:Dynamic Fracture and Fragmentation (eds. DAVISON, L., GRADY, D. E., and SHAHINPOOR, M.), Springer, New York, 219-236(1996) [17] SAUREL, R., PETITPAS, F., and ABGRALL, R. Modelling phase transition in metastable liquids:application to cavitating and flashing flows. Journal of Fluid Mechanics, 607, 313-350(2008) [18] ZEIN, A., HANTKE, M., and WARNECKE, G. Modeling phase transition for compressible twophase flows applied to metastable liquids. Journal of Computational Physics, 229, 2964-2998(2010) [19] CAI, Y., WU, H. A., and LUO, S. N. Spall strength of liquid copper and accuracy of the acoustic method. Journal of Applied Physics, 121, 105901(2017) [20] MAYER, A. E. and MAYER, P. N. Strain rate dependence of spall strength for solid and molten lead and tin. International Journal of Fracture, 222, 171-195(2020) [21] FARHAT, C., GERBEAU, J. F., and RALLU, A. FIVER:a finite volume method based on exact two-phase Riemann problems and sparse grids for multi-material flows with large density jumps. Journal of Computational Physics, 231, 6360-6379(2012) [22] SHAHBAZI, K. Robust second-order scheme for multi-phase flow computations. Journal of Computational Physics, 339, 163-178(2017) [23] ZHANG, C. and MENSHOV, I. Eulerian model for simulating multi-fluid flows with an arbitrary number of immiscible compressible components. Journal of Scientific Computing, 83, 31(2020) [24] MARTYNYUK, M. M. Generalized van der Waals equation of state for liquids and gases. Zhurnal Fizicheskoi Khimii (Russian Journal of Physical Chemistry A), 65, 1716-1717(1991) [25] MARTYNYUK, M. M. Transition of liquid metals into vapor in the process of pulse heating by current. International Journal of Thermophysics, 14, 457-470(1993) [26] BASKO, M. M. Generalized van der Waals equation of state for in-line use in hydrodynamic codes. Keldysh Institute Preprints (2018) https://doi.org/10.20948/prepr-2018-112-e [27] RICHTMYER, R. D. and MORTON, K. W. Difference Methods for Initial-Value Problems, 2nd ed., Interscience Publishers, New York (1967) [28] LANDAU, L. D. and LIFSHITZ, E. M. Fluid Mechanics, 2nd ed., Pergamon Press, Oxford (1987) [29] ZEL'DOVICH, Y. B. and RAIZER, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover Publications, New York (2012) [30] MATTSSON, A. E. and RIDER, W. J. Artificial viscosity:back to the basics. International Journal for Numerical Methods in Fluids, 77, 400-417(2015) [31] LANDSHOFF, R. A Numerical Method for Treating Fluid Flow in the Presence of Shocks, Report LA-1930, Los Alamos National Laboratory, Los Alamos (1955) [32] VON NEUMANN, J. and RICHTMYER, R. D. A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics, 21, 232-237(1950) [33] BASKO, M. M., SASOROV, P. V., MURAKAMI, M., NOVIKOV, V. G., and GRUSHIN, A. S. One-dimensional study of the radiation-dominated implosion of a cylindrical tungsten plasma column. Plasma Physics and Controlled Fusion, 54(5), 055003(2012) |