[1] COUTU, R. A. and OSTROW, S. A. Microelectromechanical systems (MEMS) resistive heaters as circuit protection devices. IEEE Transactions on Components Packaging and Manufacturing Technology, 3(12), 2174-2179(2013) [2] GOLDSCHMIDTBOEING, F., PELZ, U., GHANAM, M., BILGER, T., JAMALI, A., SABERI, M., BAEUMKER, E., JAKLIN, J., KESSLER, M., SCHMIDT, R., SCHADOW, D., SCHEUNEMANN, P., and WOIAS, P. Heater for controlled evaporation of liquids for personalized drug delivery to the lungs. Journal of Microelectromechanical Systems, 29(5), 984-989(2020) [3] WILLIAMS, S. J. Enhanced electrothermal pumping with thin film resistive heaters. Electrophoresis, 34(9-10), 1400-1406(2013) [4] KERSEMANS, V., GILCHRIST, S., ALLEN, P. D., BEECH, J. S., KINCHESH, P., VOJNOVIC, B., and SMART, S. C. A resistive heating system for homeothermic maintenance in small animals. Magnetic Resonance Imaging, 33(6), 847-851(2015) [5] HONG, S., LEE, H., LEE, J., KWON, J., HAN, S., SUH, Y. D., CHO, H., SHIN, J., YEO, J., and KO, S. H. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Advanced Materials, 27(32), 4744-4751(2015) [6] LI, Y. M., ZHANG, Z. T., LI, X. Y., ZHANG, J., LOU, H. Q., SHI, X., CHENG, X. L., and PENG, H. S. A smart, stretchable resistive heater textile. Journal of Materials Chemistry C, 5(1), 41-46(2017) [7] STIER, A., HALEKOTE, E., MARK, A., QIAO, S. T., YANG, S. X., DILLER, K., and LU, N. S. Stretchable tattoo-like heater with on-site temperature feedback control. Micromachines, 9(4), 170(2018) [8] SHI, Y. L., WANG, C. J., YIN, Y. F., LI, Y. H., XING, Y. F., and SONG, J. Z. Functional soft composites as thermal protecting substrates for wearable electronics. Advanced Functional Materials, 29(45), 1905470(2019) [9] LI, K., CHENG, X., ZHU, F., LI, L., XIE, Z., LUAN, H., WANG, Z., JI, Z., WANG, H., LIU, F., XUE, Y., JIANG, C., FENG, X., LI, L. M., ROGERS, J. A., HUANG, Y. G., and ZHANG, Y. H. A generic soft encapsulation strategy for stretchable electronics. Advanced Functional Materials, 29(8), 1806630(2019) [10] NIE, S., CAI, M., WANG, C. J., and SONG, J. Z. Fatigue life prediction of serpentine interconnects on soft elastomers for stretchable electronics. Journal of Applied Mechanics, 87, 011011(2020) [11] YAN, D. J., CHANG, J. H., ZHANG, H., LIU, J. X., SONG, H. L., XUE, Z. G., ZHANG, F., and ZHANG, Y. H. Soft three-dimensional network materials with rational bio-mimetic designs. Nature Communications, 11, 1180(2020) [12] LIU, J. X., YAN, D. J., and ZHANG, Y. H. Mechanics of unusual soft network materials with rotatable structural nodes. Journal of the Mechanics and Physics of Solids, 146, 104210(2021) [13] XU, L. Z., GUTBROD, S. R., MA, Y. J., PETROSSIANS, A., LIU, Y. H., WEBB, R. C., FAN, J. A., YANG, Z. J., XU, R. X., WHALEN, J. J., WEILAND, J. D., HUANG, Y. G., EFIMOV, I. R., and ROGERS, J. A. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Advanced Materials, 27(10), 1731-1737(2015) [14] KANG, J., KIM, H., KIM, K. S., LEE, S. K., BAE, S., AHN, J. H., KIM, Y. J., CHOI, J. B., and HONG, B. H. High-performance graphene-based transparent flexible heaters. Nano Letters, 11(12), 5154-5158(2011) [15] WEBB, R. C., BONIFAS, A. P., BEHNAZ, A., ZHANG, Y. H., YU, K. J., CHENG, H. Y., SHI, M. X., BIAN, Z. G., LIU, Z. J., KIM, Y. S., YEO, W. H., PARK, J. S., SONG, J. Z., LI, Y. H., HUANG, Y. G., GORBACH, A. M., and ROGERS, J. A. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Materials, 12(10), 938-944(2013) [16] TIAN, L. M., LI, Y. H., WEBB, R. C., KRISHNAN, S., BIAN, Z. G., SONG, J. Z., NING, X., CRAWFORD, K., KURNIAWAN, J., BONIFAS, A., MA, J., LIU, Y. H., XIE, X., CHEN, J., LIU, Y. T., SHI, Z., WU, T. Q., NING, R., LI, D. Z., SINHA, S., CAHILL, D. G., HUANG, Y. G., and ROGERS, J. A. Flexible and stretchable 3 omega sensors for thermal characterization of human skin. Advanced Functional Materials, 27(26), 1701282(2017) [17] OZISIK, M. N. Heat Conduction, 2nd ed., John Wiley and Sons, New York (1993) [18] DE MONTE, F. Transient heat conduction in one-dimensional composite slab. A ‘natural’ analytic approach. International Journal of Heat and Mass Transfer, 43(19), 3607-3619(2000) [19] BELGHAZI, H., GANAOUI, M. E., and LABBE, J. C. Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source. International Journal of Thermal Sciences, 49(2), 311-318(2010) [20] AVILES-RAMOS, C., HAJI-SHEIKH, A., and BECK, J. V. Exact solution of heat conduction in composites and application to inverse problems. Journal of Heat Transfer, 120(3), 592-599(1998) [21] HAJI-SHEIKH, A., BECK, J. V., and AGONAFER, D. Steady-state heat conduction in multilayer bodies. International Journal of Heat and Mass Transfer, 46(13), 2363-2379(2003) [22] YIN, Y. F., LI, Y. H., and LI, M. Thermal analysis of the flexible electronics affixed on large curvature myocardium surface. International Journal of Heat and Mass Transfer, 147, 118983(2020) [23] BECK, J. V., COLE, K., HAJI-SHEIKH, A., and LITKOUHI, B. Heat Conduction Using Green's Functions, Hemisphere Publishing Corporation, Washington D. C. (1992) [24] MCMASTERS, R. L. and BECK, J. V. A two-dimensional cylindrical transient conduction solution using Green's functions. Journal of Heat Transfer-Transactions of the ASME, 136(10), 101301(2014) [25] HAJI-SHEIKH, A. and BECK, J. V. Temperature solution in multidimensional multi-layer bodies. International Journal of Heat and Mass Transfer, 45(9), 1865-1877(2002) [26] KIM, H. S., BRUECKNER, E., SONG, J. Z., LI, Y. H., KIM, S., LÜ, C. F., SULKIN, J., CHOQUETTE, K., HUANG, Y. G., NUZZO, R. G., and ROGERS, J. A. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10072-10077(2011) [27] LÜ, C. F., LI, Y. H., SONG, J. Z., KIM, H. S., BRUECKNER, E., FANG, B., HWANG, K. C., HUANG, Y., NUZZO, R. G., and ROGERS, J. A. A thermal analysis of the operation of microscale, inorganic light-emitting diodes. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 468, 3215-3223(2012) [28] CUI, Y., LI, Y. H., XING, Y. F., YANG, T. Z., and SONG, J. Z. Three-dimensional thermal analysis of rectangular micro-scale inorganic light-emitting diodes integrated with human skin. International Journal of Thermal Sciences, 127, 321-328(2018) [29] HERWIG, H. and BECKERT, K. Fourier versus non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Journal of Heat Transfer, 122(2), 363-365(2000) [30] YAN, L., HAJI-SHEIKH, A., and BECK, J. V. Thermal characteristics of two-layered bodies with embedded thin-film heat source. Journal of Electronic Packaging, 115(3), 276-283(1993) [31] HAJI-SHEIKH, A. and BECK, J. V. An efficient method of computing eigenvalues in heat conduction. Numerical Heat Transfer Part B-Fundamentals, 38(2), 133-156(2000) [32] HONG, H., JUNG, Y. H., LEE, J. S., JEONG, C., KIM, J. U., LEE, S., RYU, H., KIM, H., MA, Z., and KIM, T. I. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Advanced Functional Materials, 29(37), 1902575(2019) [33] KANG, S. J., HONG, H., JEONG, C., LEE, J. S., RYU, H., YANG, J. H., KIM, J. U., SHIN, Y. J., and KIM, T. I. Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Research, 14, 3253-3259(2021) |