[1] CHOI, S. U. S. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 International Mechanical Engineering Congress and Exposition, ASME, San Francisco, 66, 99-105(1995) [2] KHO, Y. B., HUSSANAN, A., MOHAMED, M. K. A., and SALLEH, M. Z. Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips:Buongiorno model. Propulsion and Power Research, 8, 243-252(2019) [3] AHMED, S. E. and RASHED, Z. Z. MHD natural convection in a heat generating porous mediumfilled wavy enclosures using Buongiorno's nanofluid model. Case Studies in Thermal Engineering, 14, 100430(2019) [4] SHEIKHOLESLAMI, M., CHAMKHA, A. J., RANA, P., and MORADI, R. Combined thermophoresis and Brownian motion effects on nanofluid free convection heat transfer in an L-shaped enclosure. Chinese Journal of Physics, 55, 2356-2370(2017) [5] HAFEEZ, A., KHAN, M., and AHMED, J. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Computer Methods and Programs in Biomedicine, 191, 105342(2020) [6] TABASSUM, M. and MUSTAFA, M. A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk. International Journal of Heat and Mass Transfer, 123, 979-987(2018) [7] DAS, A. and SAHOO, B. Flow of a Reiner-Rivlin fluid between two infinite coaxial rotating disks. Mathematical Methods in the Applied Sciences, 41, 5602-5618(2018) [8] SAHOO, B. and SHEVCHUK, I. V. Heat transfer due to revolving flow of Reiner-Rivlin fluid over a stretchable surface. Thermal Science and Engineering Progress, 10, 327-336(2019) [9] NAQVI, S., KIM, H. M., MUHAMMAD, T., MALLAWI, F., and ULLAH, M. Z. Numerical study for slip flow of Reiner-Rivlin nanofluid due to a rotating disk. International Communications in Heat and Mass Transfer, 116, 104643(2020) [10] TANVEER, A., SALAHUDDIN, T., KHAN, M., ALSHOMRANI, A. S., and MALIK, M. Y. The assessment of nanofluid in a von Karman flow with temperature relied viscosity. Results in Physics, 9, 916-922(2018) [11] QAYYUM, S., HAYAT, T., KHAN, M. I., KHAN, M. I., and ALSAEDI, A. Optimization of entropy generation and dissipative nonlinear radiative von Karman's swirling flow with Soret and Dufour effects. Journal of Molecular Liquids, 262, 261-274(2018) [12] NAGANTHRAN, K., MUSTAFA, M., MUSHTAQ, A., and NAZAR, R. Dual solutions for fluid flow over a stretching/shrinking rotating disk subject to variable fluid properties. Physica A:Statistical Mechanics and Its Applications, 556, 124773(2020) [13] ZANGOOEE, M. R., HOSSEINZADEH, K., and GANJI, D. D. Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM. Case Studies in Thermal Engineering, 14, 100460(2019) [14] KHAN, M., HAFEEZ, A., and AHMED, J. Impacts of non-linear radiation and activation energy on the axisymmetric rotating flow of Oldroyd-B fluid. Physica A:Statistical Mechanics and Its Applications, 124085(2020) [15] HAYAT, T., AHMAD, S., KHAN, M. I., and ALSAEDI, A. Modeling and analyzing flow of third grade nanofluid due to rotating stretchable disk with chemical reaction and heat source. Physica B:Condensed Matter, 537, 116-126(2018) [16] AZIZ, A., ALSAEDI, A., MUHAMMAD, T., and HAYAT, T. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk. Results in Physics, 8, 785-792(2018) [17] HAYAT, T., MUHAMMAD, T., SHEHZAD, S. A., and ALSAEDI, A. An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. International Journal of Thermal Sciences, 111, 274-288(2017) [18] JAMALUDIN, A., NAGANTHRAN, K., NAZAR, R., and POP, I. MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. European Journal of Mechanics/B Fluids, 84, 71-80(2020) [19] MAHANTHESH, B., MACKOLIL, J., and SHEHZAD, S. A. Statistical analysis of stagnationpoint heat flow in Williamson fluid with viscous dissipation and exponential heat source effects. Heat Transfer, 49, 4580-4591(2020) [20] TIAN, J. H. and JIANG, K. Heat conduction investigation of the functionally graded materials plates with variable gradient parameters under exponential heat source load. International Journal of Heat and Mass Transfer, 122, 22-30(2018) [21] GIREESHA, B. J., KUMAR, P. B. S., MAHANTHESH, B., SHEHZAD, S. A., and ABBASI, F. M. Nonlinear gravitational and radiation aspects in nanoliquid with exponential space dependent heat source and variable viscosity. Microgravity Science and Technology, 30, 257-264(2018) [22] MAHANTHESH, B., SHASHIKUMAR, N. S., GIREESHA, B. J., and ANIMASAUN, I. L. Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty TiO2-EO nanoliquid with nonlinear radiative heat. Journal of Computational Design and Engineering, 6, 551-561(2019) [23] AHMED, A., KHAN, M., and AHMED, J. Thermal analysis in swirl motion of Maxwell nanofluid over a rotating circular cylinder. Applied Mathematics and Mechanics (English Edition), 41(9), 1417-1430(2020) https://doi.org/10.1007/s10483-020-2643-7 [24] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Impact of anisotropic slip on the stagnation-point flow past a stretching/shrinking surface of the Al2O3-Cu/H2O hybrid nanofluid. Applied Mathematics and Mechanics (English Edition), 41(9), 1401-1416(2020) https://doi.org/10.1007/s10483-020-2642-6 [25] LIU, H., ANIMASAUN, I. L., SHAH, N. A., KORIKO, O. K., and MAHANTHESH, B. Further discussion on the significance of quartic autocatalysis on the dynamics of water conveying 47 nm alumina and 29 nm cupric nanoparticles. Arabian Journal for Science and Engineering, 45, 5977-6004(2020) [26] SABU, A. S., MATHEW, A., NEETHU, T. S., and ANIL GEORGE, K. Statistical analysis of MHD convective ferro-nanofluid flow through an inclined channel with Hall current, heat source and Soret effect. Thermal Science and Engineering Progress, 22, 100816(2021) [27] FISHER, R. A. On the "probable error" of a coefficient of correlation deduced from a small sample. Metron, 1, 1-32(1921) |