[1] LYLE, T. R. and BALDWIN, J. M. Experiments on the propagation of longitudinal waves of magnetic flux along iron wires and rods. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 12, 433-468(1906) [2] BISHOP, R. E. D. Longitudinal elastic waves in cylindrical rods. nature, 172, 169(1953) [3] MCSKIMIN, H. J. Propagation of longitudinal waves and shear waves in cylindrical rods at high frequencies. Journal of the Acoustical Society of America, 28, 484-494(1956) [4] PORUBOV, A. V. and SAMSONOV, A. M. Revision of the theory of the dispersion of longitudinalwaves of deformation in nonlinear-elastic rod. Pisma V Zhurnal Tekhnicheskoi Fiziki, 19, 26-29(1993) [5] NAGY, P. B. and NAYFEH, A. H. Viscosity-induced attenuation of longitudinal guided waves in fluid-loaded rods. Journal of the Acoustical Society of America, 100, 1501-1508(1996) [6] BAZ, A. Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping. Smart Materials & Structures, 9, 372-377(2000) [7] PALACZ, M. and KRAWCZUK, M. Analysis of longitudinal wave propagation in a cracked rod by the spectral element method. Computers & Structures, 80, 1809-1816(2002) [8] KRAWCZUK, M., GRABOWSKA, J., and PALACZ, M. Longitudinal wave propagation, part I:comparison of rod theories. Journal of Sound and Vibration, 295, 461-478(2006) [9] KRAWCZUK, M., GRABOWSKA, J., and PALACZ, M. Longitudinal wave propagation, part II:analysis of crack influence. Journal of Sound and Vibration, 295, 479-490(2006) [10] BENATAR, A., RITTEL, D., and YARIN, A. L. Theoretical and experimental analysis of longitudinal wave propagation in cylindrical viscoelastic rods. Journal of the Mechanics and Physics of Solids, 51, 1413-1431(2003) [11] YANG, K. A unified solution for longitudinal wave propagation in an elastic rod. Journal of Sound and Vibration, 314, 307-329(2008) [12] SRIVASTAVA, A. and DI SCALEA, F. L. On the existence of longitudinal or flexural waves in rods at nonlinear higher Harmonics. Journal of Sound and Vibration, 329, 1499-1506(2010) [13] BRIZARD, D., JACQUELIN, E., and RONEL, S. Polynomial mode approximation for longitudinal wave dispersion in circular rods. Journal of Sound and Vibration, 439, 388-397(2019) [14] AYDOGDU, M. Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. International Journal of Engineering Science, 56, 17-28(2012) [15] XIAO, Y., WEN, J. H., and WEN, X. S. Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators. New Journal of Physics, 14, 033042(2012) [16] XUE, C. X. and PAN, E. On the longitudinal wave along a functionally graded magneto-electroelastic rod. International Journal of Engineering Science, 62, 48-55(2013) [17] YANG, S. J. and XU, T. Z. 1-soliton and peaked solitary wave solutions of nonlinear longitudinal wave equation in magneto-electro-elastic circular rod. Nonlinear Dynamics, 87, 2735-2739(2017) [18] WANG, K., ZHOU, J. X., XU, D. L., and OU-YANG, H. J. Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mechanical Systems and Signal Processing, 124, 664-678(2019) [19] AUTUORI, G., CLUNI, F., GUSELLA, V., and PUCCI, P. Longitudinal waves in a nonlocal rod by fractional Laplacian. Mechanics of Advanced Materials and Structures, 27, 599-604(2020) [20] SCHIEHLEN, W., BIN, H., and EBERHARD, P. Longitudinal waves in elastic rods with discontinuous cross sections. Contact Mechanics, 103, 117-124(2002) [21] GAN, C. B., WEI, Y. M., and YANG, S. X. Longitudinal wave propagation in a rod with variable cross-section. Journal of Sound and Vibration, 333, 434-445(2014) [22] FENG, K. On difference schemes and symplectic geometry. Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, 42-58(1984) [23] BRIDGES, T. J. Multi-symplectic structures and wave propagation. Mathematical Proceedings of the Cambridge Philosophical Society, 121, 147-190(1997) [24] HU, W. P., DENG, Z. C., HAN, S. M., and ZHANG, W. R. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. Journal of Computational Physics, 235, 394-406(2013) [25] MARSDEN, J. E. and RATIU, T. Introduction to Mechanics and Symmetry, Springer-Verlag, New York (1999) [26] HU, W. P., WANG, Z., ZHAO, Y. P., and DENG, Z. C. Symmetry breaking of infinite-dimensional dynamic system. Applied Mathematics Letters, 103, 106207(2020) [27] MONOVASILIS, T., KALOGIRATOU, Z., and SIMOS, T. E. Symplectic partitioned Runge-Kutta methods with minimal phase-lag. Computer Physics Communications, 181, 1251-1254(2010) [28] JAY, L. Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. SIAM Journal on Numerical Analysis, 33, 368-387(1996) [29] TANG, W. S., SUN, Y. J., and ZHANG, J. J. High order symplectic integrators based on continuous-stage Runge-Kutta-Nyström methods. Applied Mathematics and Computation, 361, 670-679(2019) [30] MARSDEN, J. E. and SHKOLLER, S. Multisymplectic geometry, covariant Hamiltonians, and water waves. Mathematical Proceedings of the Cambridge Philosophical Society, 125, 553-575(1999) [31] HU, W. P., XU, M. B., SONG, J. R., GAO, Q., and DENG, Z. C. Coupling dynamic behaviors of flexible stretching hub-beam system. Mechanical Systems and Signal Processing, 151, 107389(2021) [32] HU, W. P., ZHANG, C. Z., and DENG, Z. C. Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Communications in Nonlinear Science and Numerical Simulation, 84, 10519(2020) [33] HU, W. P., YU, L. J., and DENG, Z. C. Minimum control energy of spatial beam with assumed attitude adjustment target. Acta Mechanica Solida Sinica, 33, 51-60(2020) [34] HU, W. P., YE, J., and DENG, Z. C. Internal resonance of a flexible beam in a spatial tethered system. Journal of Sound and Vibration, 475, 115286(2020) [35] HU, W. P. and DENG, Z. C. Interaction effects of DNA, RNA-polymerase, and cellular fluid on the local dynamic behaviors of DNA. Applied Mathematics and Mechanics (English Edition), 41(4), 623-636(2020) https://doi.org/10.1007/s10483-020-2595-6 [36] HU, W. P., SONG, M. Z., YIN, T. T., WEI, B. Q., and DENG, Z. C. Energy dissipation of damping cantilevered single-walled carbon nanotube oscillator. Nonlinear Dynamics, 91, 767-776(2018) [37] HU, W. P., SONG, M. Z., and DENG, Z. C. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system. Journal of Sound and Vibration, 412, 58-73(2018) [38] HU, W. P. and DENG, Z. C. Non-sphere perturbation on dynamic behaviors of spatial flexible damping beam. Acta Astronautica, 152, 196-200(2018) [39] HU, W. P., DENG, Z. C., and YIN, T. T. Almost structure-preserving analysis for weakly linear damping nonlinear Schrödinger equation with periodic perturbation. Communications in Nonlinear Science and Numerical Simulation, 42, 298-312(2017) [40] HU, W. P., HUAI, Y. L., XU, M. B., FENG, X. Q., JIANG, R. S., ZHENG, Y. P., and DENG, Z. C. Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids. Mechanical Systems and Signal Processing, 159, 107833(2021) [41] BRIDGES, T. J., HYDON, P. E., and LAWSON, J. K. Multisymplectic structures and the variational bicomplex. Mathematical Proceedings of the Cambridge Philosophical Society, 148, 159-178(2010) [42] RUTH, R. D. A canonical integration technique. IEEE Transactions on Nuclear Science, 30, 2669-2671(1983) [43] AYDIN, A. and KARASOZEN, B. Multisymplectic box schemes for the complex modified Korteweg-de Vries equation. Journal of Mathematical Physics, 51, 083511(2010) [44] WANG, Y. S., WANG, B., and CHEN, X. Multisymplectic Euler box scheme for the KdV equation. Chinese Physics Letters, 24, 312-314(2007) [45] CALVETTI, D., GOLUB, G. H., GRAGG, W. B., and REICHEL, L. Computation of GaussKronrod quadrature rules. Mathematics of Computation, 69(231), 1035-1052(2000) [46] LAURIE, D. P. Calculation of Gauss-Kronrod quadrature rules. Mathematics of Computation, 66, 1133-1145(1997) [47] HU, W. P., LI, Q. J., JIANG, X. H., and DENG, Z. C. Coupling dynamic behaviors of spatial flexible beam with weak damping. International Journal for Numerical Methods in Engineering, 111, 660-675(2017) |