[1] GAO, P. X., ZHAI, J. Y., YAN, Y. Y., HAN, Q. K., QU, F. Z., and CHEN, X. H. A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft. Aerospace Science and Technology, 49, 144-153(2016) [2] GAO, Y. and SUN, W. Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of preload. Frontiers of Mechanical Engineering, 14(3), 358-368(2019) [3] GAO, P. X., YU, T., ZHANG, Y. L., WANG, J., and ZHAI, J. Y. Vibration analysis and control technologies of hydraulic pipeline system in aircraft:a review. Chinese Journal of Aeronautics, 34(4), 83-114(2021) [4] WADHAM-GAGNON, M., PAÏDOUSSIS, M. P., and SEMLER, C. Dynamics of cantilevered pipes conveying fluid, part 1:nonlinear equations of three-dimensional motion. Journal of Fluids and Structures, 23, 545-567(2007) [5] PAÏDOUSSIS, M. P., SEMLER, C., WADHAM-GAGNON, M., and SAAID, S. Dynamics of cantilevered pipes conveying fluid, part 2:dynamics of the system with intermediate spring support. Journal of Fluids and Structures, 23, 569-587(2007) [6] WANG, Y. J., ZHANG, Q. C., WANG, W., and YANG, T. Z. In-plane dynamics of a fluidconveying corrugated pipe supported at both ends. Applied Mathematics and Mechanics (English Edition), 40(8), 1119-1134(2019) https://doi.org/10.1007/s10483-019-2511-6 [7] ZHAO, D. M., LIU, J. L., and WU, C. Q. Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading. Applied Mathematics and Mechanics (English Edition), 36(8), 1017-1032(2015) https://doi.org/10.1007/s10483-015-1960-7 [8] DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675-688(2019) [9] TAN, X. and DING, H. Parametric resonances of Timoshenko pipes conveying pulsating highspeed fluid. Journal of Sound and Vibration, 485, 115594(2020) [10] DING, H., ZHU, M. H., and CHEN, L. Q. Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dynamics, 485, 115594(2020) [11] TAN, X., DING, H., and CHEN, L. Q. Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model. Journal of Sound and Vibration, 455, 241-255(2019) [12] NI, Q., WANG, Y. K., TAN, M., LUO, Y. Y., YAN, H., and WANG, L. Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, 81, 893-906(2015) [13] WANG, Y. K., WANG, L., NI, Q., DAI, H. L., YAN, H., and LUO, Y. Y. Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, 93, 505-524(2018) [14] ZHOU, K., NI, Q., CHEN, W., DAI, H. L., PENG, Z. R., and WANG, L. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections. Applied Mathematics and Mechanics (English Edition), 42(5), 703-720(2021) https://doi.org/10.1007/s10483-021-2729-6 [15] LIANG, F., YANG, X. D., QIAN, Y. J., and ZHANG, W. Transverse free vibration and stability analysis of spinning pipes conveying fluid. International Journal of Mechanical Sciences, 137, 195-204(2018) [16] LIANG, F., GAO, A., LI, X. F., and ZHU, W. D. Nonlinear parametric vibration of spinning pipes conveying fluid with varying spinning speed and flow velocity. Applied Mathematical Modelling, 95, 320-338(2021) [17] LIANG, F., GAO, A., and YANG, X. D. Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans. Applied Mathematical Modelling, 83, 454-469(2020) [18] TANG, Y., XU, J. Y., and YANG, T. Z. Natural dynamic characteristics of a circular cylindrical Timoshenko tube made of three-directional functionally graded material. Applied Mathematics and Mechanics (English Edition), 43(4), 479-496(2022) https://doi.org/10.1007/s10483-022-2839-6 [19] YANG, T. Z., LIU, T., TANG, Y., HOU, S., and LV, X. F. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dynamics, 97, 1937-1944(2019) [20] SEMLER, C. and PAÏDOUSSIS, M. P. Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. Journal of Fluids and Structures, 10, 787-825(1996) [21] PAÏDOUSSIS, M. P. and LI, G. X. Pipes conveying fluid:a model dynamical problem. Journal of Fluids and Structures, 7, 137-204(1993) [22] ZHANG, Y. F., YAO, M. H., ZHANG, W., and WEN, B. C. Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerospace Science and Technology, 68, 441-453(2017) [23] ZHAI, H. B., WU, Z. Y., LIU, Y. S., and YUE, Z. F. Dynamic response of pipeline conveying fluid to random excitation. Nuclear Engineering and Design, 241, 2744-2749(2011) [24] CHAI, Q. D., ZENG, J., MA, H., LI, K., and HAN, Q. K. A dynamic modeling approach for nonlinear vibration analysis of the L-type pipeline system with clamps. Chinese Journal of Aeronautics, 33(12), 3253-3265(2020) [25] ZANGANEH, R., AHMADI, A., and KERAMAT, A. Fluid-structure interaction with viscoelastic supports during waterhammer in a pipeline. Journal of Fluids and Structures, 54, 215-234(2015) [26] GAO, P. X., QU, H. Q., ZHANG, Y. L., YU, T., and ZHAI, J. Y. Experimental and numerical vibration analysis of hydraulic pipeline system under multiexcitations. Shock and Vibration, 2020, 3598374(2020) [27] LI, Q. S., YANG, K., ZHANG, L. X., and ZHANG, N. Frequency domain analysis of fluidstructure interaction in liquid-filled pipe systems by transfer matrix method. International Journal of Mechanical Sciences, 44, 2067-2087(2002) [28] ZHANG, L. X., TIJSSELING, A. S., and VARDY, A. E. FSI analysis of liquid-filled pipes. Journal of Sound and Vibration, 224(1) 69-99(1999) [29] LIU, G. M. and LI, Y. H. Vibration analysis of liquid-filled pipelines with elastic constraints. Journal of Sound and Vibration, 330, 3166-3181(2011) [30] LI, S. J., LIU, G. M., and KONG, W. T. Vibration analysis of pipes conveying fluid by transfer matrix method. Nuclear Engineering and Design, 266, 78-88(2014) [31] LESMEZ, M. W., WIGGERT, D. C., and HATFIELD, F. J. Modal analysis of vibrations in liquid-filled piping systems. Journal of Fluids Engineering-Transactions of the ASME, 112(3), 311-318(1990) [32] GUO, X. M., CAO, Y. M., MA, H., XIAO, C. L., and WEN, B. C. Dynamic analysis of an Lshaped liquid-filled pipe with interval uncertainty. International Journal of Mechanical Sciences, 217, 107040(2022) [33] XU. Y. Z., JOHNSTON, D. N., JIAO, Z. X., and PLUMMER, A. R. Frequency modelling and solution of fluid-structure interaction in complex pipelines. Journal of Sound and Vibration, 33, 2800-2822(2014) [34] KERAMAT, A., KARNEY, B., GHIDAOUI, M. S., and WANG, X. Transient-based leak detection in the frequency domain considering fluid-structure interaction and viscoelasticity. Mechanical Systems and Signal Processing, 153, 107500(2021) [35] ALIABADI, H. K., AHMADI, A., and KERAMAT, A. Frequency response of water hammer with fluid-structure interaction in a viscoelastic pipe. Mechanical Systems and Signal Processing, 114, 106848(2020) [36] SHEN, C., ZHANG, Y. Z., WANG, Z. X., ZHANG, D, W., and LIU, Z. Y. Experimental investigation on the heat transfer performance of a flat parallel flow heat pipe. International Journal of Heat and Mass Transfer, 168, 120856(2021) [37] HIBIKI, T., MAO, K., and OZAKI, T. Development of void fraction-quality correlation for twophase flow in horizontal and vertical tube bundles. Progress in Nuclear Energy, 97, 38-52(2017) [38] GAO, P. X., ZHANG, Y. L., LIU, X. F., YU, T., and WANG, J. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method. Journal of Mechanical Science and Technology, 34(8), 3137-3146(2020) [39] MA, H. Y., LONG, Y., LI, X. H., ZHONG, M. S., YIN, Q., and XIE, Q. M. Attenuation and timefrequency characteristics of explosion ground vibration of shallow buried OD1422-X80mm-12 MPa pipeline based on prototype experiment. Journal of Performance of Constructed Facilities, 34(1), 04019092(2020) [40] MA, H. Y., LONG, Y., LI, X. H., ZHONG, M. S., WU, J. Y., and ZHOU, Y. Study on vibration characteristics of natural gas pipeline explosion based on improved MP-WVD algorithm. Shock and Vibration, 34(1), 8969675(2018) [41] BALKAYA, M., KAYA, M. O., and SAGlLAMER, A. Free transverse vibrations of an elastically connected simply supported twin pipe system. Structural Engineering & Mechanics, 34(5), 549-561(2010) [42] ARMENTANO, M. G., PADRA, C., RODRÍGUEZ, R., and SCHEBLE, M. An hp adaptive strategy to compute the vibration modes of a fluid-solid coupled system. International Journal for Numerical Methods in Fluids, 83, 104024(2020) [43] QIN, B., ALAM, M. M., and ZHOU, Y. Free vibrations of two tandem elastically mounted cylinders in crossflow. Journal of Fluid Mechanics, 861, 369-381(2019) [44] ZHANG, Q., ZHOU, X. L., WANG, J. H., and LI, W. L. Dynamic interaction between two parallel submarine pipelines considered vortex-induced vibration and local scour. Marine Georesources & Geotechnology, 37(5), 609-621(2018) [45] LI, S. J., KARNEY, B. W., and LIU, G. M. FSI research in pipeline system-a review of the literature. Journal of Fluids and Structures, 57, 277-297(2015) [46] TIJSSELING, A. S. Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration. Journal of Fluids and Structures, 18(2), 179-196(2003) [47] VARDY, A. E. and FAN, D. Flexural waves in a closed tube. Proceedings of the 6th International Conference on Pressure Surges, Cambridge, UK, 43-57(1989) [48] ULANOV, A. M. and BEZBORODOV, S. A. Calculation method of pipeline vibration with damping supports made of the MR material. Procedia Engineering, 150, 101-106(2016) [49] TENTARELLI, S. C. Propagation of Noise and Vibration in Complex Hydraulic Tubing Systems, Ph. D. dissertation, Lehigh University, 29-47(1989) |