[1] HE, Q., DAI, H. L., GUI, Q. F., and LI, J. J. Analysis of vibration characteristics of joined cylindrical-spherical shells. Engineering Structures, 218, 110767(2020) [2] KARROUBI, R. and IRANI-RAHAGHI, M. Rotating sandwich cylindrical shells with an FGM core and two FGPM layers:free vibration analysis. Applied Mathematics and Mechanics (English Edition), 40(4), 563-578(2019) https://doi.org/10.1007/s10483-019-2469-8 [3] CHEN, Q., SHI, Q., SIGNETTI, S., SUN, F. F., LI, Z. Y., ZHU, F. P., HE, S. Y., and PUGNO, N. M. Plastic collapse of cylindrical shell-plate periodic honeycombs under uniaxial compression:experimental and numerical analyses. International Journal of Mechanical Sciences, 111-112, 125-133(2016) [4] YANG, J. S., MA, L., VARGAS, M. C., HUANG, T. X., SCHRODER, K. U., SCHMIDT, R., and WU, L. Z. Influence of manufacturing defects on modal properties of composite. Composites Science and Technology, 147, 89-99(2017) [5] MUC, A., STAWIARSKI, A., and ROMANOWICZ, P. Experimental investigations of compressed sandwich composite/honeycomb cylindrical shells. Applied Composite Materials, 25(1), 177-189(2018) [6] DUC, N. D., SEUNG-EOCK, K., TUAN, N. D., TRAN, P., and KHOA, N. D. New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer. Aerospace Science and Technology, 70, 396-404(2017) [7] CONG, P. H., KHANH, N. D., KHOA, N. D., and DUC, N. D. New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT. Composite Structures, 185, 455-465(2018) [8] CONG, P. H., LONG, P. T., VAN NHAT, N., and DUC, N. D. Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative Poisson's ratio in auxetic honeycombs core layer. International Journal of Mechanical Sciences, 152, 443-453(2019) [9] LAN, X. K., FENG, S. S., HUANG, Q., and ZHOU, T. A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores. Aerospace Science and Technology, 87, 37-47(2019) [10] ZHANG, Y. J. and LI, Y. Q. Nonlinear dynamic analysis of a double curvature honeycomb sandwich shell with simply supported boundaries by the homotopy analysis method. Composite Structures, 221, 110884(2019) [11] EIPAKCHI, H. and NASREKANI, F. M. Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure. Composite Structures, 254, 112847(2020) [12] KANG, J. H. Three-dimensional vibration analysis of joined thick conical cylindrical shells of revolution with variable thickness. Journal of Sound and Vibration, 331(18), 4187-4198(2012) [13] CARESTA, M. and KESSISSOGLOU, N. J. Free vibrational characteristics of isotropic coupled cylindrical-conical shells. Journal of Sound and Vibration, 329(6), 733-751(2010) [14] SU, Z. and JIN, G. Y. Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method. Journal of the Acoustical Society of America, 140(5), 3925-3940(2016) [15] LI, H. C., GAO, C., LI, L., PANG, F. Z., and LANG, J. C. A semi analytical solution for free vibration analysis of combined spherical and cylindrical shells with non-uniform thickness based on Ritz method. Thin-Walled Structure, 145, 106443(2019) [16] QIN, Z. Y., YANG, Z. B., ZU, J., and CHU, F. L. Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. Thin-Walled Structures, 142-143, 127-139(2018) [17] CHAI, Q. D. and WANG, Y. Q. A general approach for free vibration analysis of spinning joined conical cylindrical shells with arbitrary boundary conditions. Thin-Walled Structures, 168, 108243(2021) [18] ZHANG, C. Y., JIN, G. Y., WANG, Z. H., and SUN, Y. Dynamic stiffness formulation and vibration analysis of coupled conical-ribbed cylindrical-conical shell structure with general boundary condition. Ocean Engineering, 234, 109294(2021) [19] GUO, C. C., LIU, T., BIN, Q., WANG, Q. S., and WANG, A. L. Free vibration analysis of coupled structures of laminated composite conical, cylindrical and spherical shells based on the spectral-Tchebychev technique. Composite Structures, 114965(2021) [20] SOURESHJANIA, A. H., TALEBITOOTIA, R., and TALEBITOOTI, M. A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells. Aerospace Science and Technology, 99, 105559(2020) [21] BAGHERI, H., KIANI, Y., and ESLAMI, M. R. Free vibration of FGM conical-spherical shells. Thin-Walled Structures, 160, 107387(2021) [22] PANG, F. Z., LI, H. C., CHEN, H. L., and SHAN, Y. H. Free vibration analysis of combined composite laminated cylindrical and spherical shells with arbitrary boundary conditions. Mechanics of Advanced Materials and Structures, 28(2), 182-199(2021) [23] FU, M. H. and YIN, J. R. Equivalent elastic parameters of the honeycomb core. Acta Mechanica Sinica, 15(1), 113-118(1999) [24] BIRMAN, V. On the choice of shear correction factor in sandwich structures. Journal of Sandwich Structures & Materials, 4(1), 83-95(2002) |