[1] BELYTSCHKO, T., LU, Y. Y., and GU, L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229-256(1994) [2] NAYROLES, B., TOUZOT, G., and VILLON, P. Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics, 10(5), 307-318(1992) [3] LU, Y. Y., BELYTSCHKO, T., and TABBARA, M. Element-free Galerkin method for wave propagation and dynamic fracture. Computer Methods in Applied Mechanics and Engineering, 126(1-2), 131-153(1995) [4] ORUÇ, Ö. Numerical solution to the deflection of thin plates using the two-dimensional Berger equation with a meshless method based on multiple-scale Pascal polynomials. Applied Mathematical Modelling, 74, 441-456(2019) [5] ORUÇ, Ö. A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equations. Engineering Analysis with Boundary Elements, 129, 55-66(2021) [6] ORUÇ, Ö. A strong-form local meshless approach based on radial basis function-finite difference (RBF-FD) method for solving multi-dimensional coupled damped Schrödinger system appearing in Bose-Einstein condensates. Communications in Nonlinear Science and Numerical Simulation, 104, 106042(2022) [7] WANG, L. H. and QIAN, Z. H. A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation. Computer Methods in Applied Mechanics and Engineering, 371, 113303(2020) [8] LIU, W. K., JUN, S., and ZHANG, Y. F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20(8-9), 1081-1106(1995) [9] LIU, G. R. and GU, Y. T. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 50(4), 937-951(2001) [10] WANG, L. H., LIU, Y. J., ZHOU, Y. T., and YANG, F. A gradient reproducing kernel based stabilized collocation method for the static and dynamic problems of thin elastic beams and plates. Computational Mechanics, 68(4), 709-739(2021) [11] ORUÇ, Ö., ESEN, A., and BULUT, F. Numerical investigation of dynamic Euler-Bernoulli equation via 3-scale Haar wavelet collocation method. Hacettepe Journal of Mathematics and Statistics, 50(1), 159-179(2021) [12] LIU, X. J., LIU, G. R., WANG, J. Z., and ZHOU, Y. H. A wavelet multiresolution interpolation Galerkin method for targeted local solution enrichment. Computational Mechanics, 64(4), 989-1016(2019) [13] LIU, X. J., LIU, G. R., WANG, J. Z., and ZHOU, Y. H. A wavelet multi-resolution enabled interpolation Galerkin method for two-dimensional solids. Engineering Analysis with Boundary Elements, 117, 251-268(2020) [14] MAYO, A. The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM Journal on Numerical Analysis, 21(2), 285-299(1984) [15] LEVEQUE, R. J. and LI, Z. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis, 31(4), 1019-1044(1994) [16] JOHANSEN, H. and COLELLA, P. A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. Journal of Computational Physics, 147, 60-85(1998) [17] MCCORQUODALE, P., COLELLA, P., and JOHANSEN, H. A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries. Journal of Computational Physics, 173(2), 620-635(2001) [18] CALHOUN, D. and LEVEQUE, R. J. A Cartesian grid finite-volume method for the advectiondiffusion equation in irregular geometries. Journal of Computational Physics, 157(1), 143-180(2000) [19] MAI-DUY, N. and TRAN-CONG, T. A Cartesian-grid collocation method based on radial-basisfunction networks for solving PDEs in irregular domains. Numerical Methods for Partial Differential Equations, 23(5), 1192-1210(2007) [20] BAROZZI, G. S., BUSSI, C., and CORTICELLI, M. A. A fast Cartesian scheme for unsteady heat diffusion on irregular domains. Numerical Heat Transfer, Part B: Fundamentals, 46(1), 59-77(2004) [21] JOMAA, Z. and MACASKILL, C. The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions. Journal of Computational Physics, 202(2), 488-506(2005) [22] BUENO-OROVIO, A., PÉREZ-GARCÍA, V. M., and FENTON, F. H. Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method. SIAM Journal on Scientific Computing, 28(3), 886-900(2006) [23] SHEN, L. H., YOUNG, D. L., LO, D. C., and SUN, C. P. Local differential quadrature method for 2-D flow and forced-convection problems in irregular domains. Numerical Heat Transfer, Part B: Fundamentals, 55(2), 116-134(2009) [24] BURRUS, C. S. and ODEGARD, I. E. Coiflet systems and zero moments. IEEE Transactions on Signal Processing, 46(3), 761-766(1998) [25] HOU, Z. C., WENG, J., LIU, X. J., ZHOU, Y. H., and WANG, J. Z. A sixth-order wavelet integral collocation method for solving nonlinear boundary value problems in three dimensions. Acta Mechanica Sinica, 38(2), 1-12(2022) [26] WANG, J. Z. Generalized Theory and Arithmetic of Orthogonal Wavelets and Applications to Researches of Mechanics Including Piezoelectric Smart Structures (in Chinese), Ph. D dissertation, Lanzhou University, 14-20(2001) [27] CHEN, M. Q., HWANG, C., and SHIH, Y. P. The computation of wavelet-Galerkin approximation on a bounded interval. International Journal for Numerical Methods in Engineering, 39(17), 2921-2944(1996) [28] LIU, X. J., ZHOU, Y. H., WANG, X. M., and WANG, J. Z. A wavelet method for solving a class of nonlinear boundary value problems. Communications in Nonlinear Science and Numerical Simulation, 18(8), 1939-1948(2013) [29] TIMOSHENKO, S. and WOINOWSKY-KRIEGER, S. Theory of Plates and Shells, 2nd ed., McGraw-Hill Publishing Company, New York, 105-313(1964) |