Applied Mathematics and Mechanics (English Edition) ›› 2023, Vol. 44 ›› Issue (9): 1577-1596.doi: https://doi.org/10.1007/s10483-023-3031-8
• Articles • Previous Articles Next Articles
A. RAHMANI1, S. FAROUGHI1, M. SARI2
Received:
2023-05-02
Revised:
2023-07-19
Published:
2023-08-28
Contact:
S. FAROUGHI, E-mail: sh.farughi@uut.ac.ir
2010 MSC Number:
A. RAHMANI, S. FAROUGHI, M. SARI. On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1577-1596.
[1] ATTIA, M. A. Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges. Meccanica, 52, 2391-2420(2017) [2] ELTAHER, M. A., SHANAB, R. A., and MOHAMED, N. A. Analytical solution of free vibration of viscoelastic perforated nanobeam. Archive of Applied Mechanics, 93(1), 221-243(2023) [3] RAHMANIAN, S. and HOSSEINI-HASHEMI, S. Size-dependent resonant response of a double-layered viscoelastic nanoresonator under electrostatic and piezoelectric actuations incorporating surface effects and Casimir regime. International Journal of Non-Linear Mechanics, 109, 118-131(2019) [4] CABAN, S., AYTEKIN, E., SAHIN, A., and CAPAN, Y. Nanosystems for drug delivery. Drug Design and Delivery, 2(1), 2(2014) [5] CAO, D. Y. and WANG, Y. Q. Wave dispersion in viscoelastic lipid nanotubes conveying viscous protein solution. The European Physical Journal Plus, 135, 24(2020) [6] SARPARAST, H., ALIBEIGLOO, A., BORJALILOU, V., and KOOCHAKIANFARD, O. Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects. Archives of Civil and Mechanical Engineering, 22(4), 172(2022) [7] MARTINS-JÚNIOR, P. A., ALCÂNTARA, C. E., RESENDE, R. R., and FERREIRA, A. J. Carbon nanotubes: directions and perspectives in oral regenerative medicine. Journal of Dental Research, 92(7), 575-583(2013) [8] ANSARI, R., NESARHOSSEINI, S., FARAJI-OSKOUIE, M., and ROUHI, H. Size-dependent buckling analysis of piezoelectric nanobeams resting on elastic foundation considering flexoelectricity effect using the stress-driven nonlocal model. The European Physical Journal Plus, 136, 876(2021) [9] ZAREPOUR, M., HOSSEINI, S. A., and GHADIRI, M. Free vibration investigation of nano mass sensor using differential transformation method. Applied Physics A, 123, 1-10(2017) [10] ALSHENAWY, R., SAHMANI, S., SAFAEI, B., ELMOGHAZY, Y., AL-ALWAN, A., and AL NUWAIRAN, M. Surface stress effect on nonlinear dynamical performance of nanobeam-type piezoelectric energy harvesters via meshless collocation technique. Engineering Analysis with Boundary Elements, 152, 104-119(2023) [11] ALI, F., RAZA, W., LI, X., GUL, H., and KIM, K. H. Piezoelectric energy harvesters for biomedical applications. Nano Energy, 57, 879-902(2019) [12] WANG, Y., HONG, M., VENEZUELA, J., LIU, T., and DARGUSCH, M. Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting. Bioactive Materials, 22, 291-311(2023) [13] EBRAHIMI, F. and BARATI, M. R. Damping vibration behavior of viscoelastic porous nanocrystalline nanobeams incorporating nonlocal-couple stress and surface energy effects. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43, 187-203(2019) [14] NADERI, A., BEHDAD, S., and FAKHER, M. Size dependent effects of two-phase viscoelastic medium on damping vibrations of smart nanobeams: an efficient implementation of GDQM. Smart Materials and Structures, 31(4), 045007(2022) [15] EL-MOUMEN, A., TARFAOUI, M., NACHTANE, M., and LAFDI, K. Carbon nanotubes as a player to improve mechanical shock wave absorption. Composites Part B: Engineering, 164, 67-71(2019) [16] WANG, X., WU, S., YIN, J., MORADI, Z., SAFA, M., and KHADIMALLAH, M. A. On the electromechanical energy absorption of the reinforced composites piezoelectric MEMS via adaptive neuro-fuzzy inference system and MCS theory. Composite Structures, 303, 116246(2023) [17] LIU, H., LIU, H., and YANG, J. Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation. Composites Part B: Engineering, 155, 244-256(2018) [18] BAGHERI, R. and TADI-BENI, Y. On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams. Journal of Vibration and Control, 27(17-18), 2018-2033(2021) [19] ERINGEN, A. C. Nonlocal continuum mechanics based on distributions. International Journal of Engineering Science, 44(3-4), 141-147(2006) [20] LI, C., ZHU, C., LIM, C. W., and LI, S. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Applied Mathematics and Mechanics (English Edition), 43(12), 1821-1840(2022) https://doi.org/10.1007/s10483-022-2917-7 [21] LAM, D. C., YANG, F., CHONG, A. C. M., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8), 1477-1508(2003) [22] DINDARLOO, M. H. and LI, L. Vibration analysis of carbon nanotubes reinforced isotropic doubly-curved nanoshells using nonlocal elasticity theory based on a new higher order shear deformation theory. Composites Part B: Engineering, 175, 107170(2019) [23] LAL, R. and DANGI, C. Thermomechanical vibration of bi-directional functionally graded non-uniform Timoshenko nanobeam using nonlocal elasticity theory. Composites Part B: Engineering, 172, 724-742(2019) [24] SOLTANI, M., ATOUFI, F., MOHRI, F., DIMITRI, R., and TORNABENE, F. Nonlocal elasticity theory for lateral stability analysis of tapered thin-walled nanobeams with axially varying materials. Thin-Walled Structures, 159, 107268(2021) [25] TORABI, J., NIIRANEN, J., and ANSARI, R. Nonlinear finite element analysis within strain gradient elasticity: Reissner-Mindlin plate theory versus three-dimensional theory. European Journal of Mechanics-A/Solids, 87, 104221(2021) [26] EGHBALI, M., HOSSEINI, S. A., and POURSEIFI, M. Free transverse vibrations analysis of size-dependent cracked piezoelectric nano-beam based on the strain gradient theory under mechanic-electro forces. Engineering Analysis with Boundary Elements, 143, 606-612(2022) [27] HU, H., YU, T., and BUI, T. Q. Functionally graded curved Timoshenko microbeams: a numerical study using IGA and modified couple stress theory. Composite Structures, 254, 112841(2020) [28] HASSANNEJAD, R., HOSSEINI, S. A., and ALIZADEH-HAMIDI, B. Influence of non-circular cross section shapes on torsional vibration of a micro-rod based on modified couple stress theory. Acta Astronautica, 178, 805-812(2021) [29] LIM, C. W., ZHANG, G., and REDDY, J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298-313(2015) [30] JIN, H., SUI, S., ZHU, C., and LI, C. Axial free vibration of rotating FG piezoelectric nano-rods accounting for nonlocal and strain gradient effects. Journal of Vibration Engineering and Technologies, 11(2), 537-549(2023) [31] THAI, C. H., FEREIRA, A. J. M., and PHUNG-VAN, P. A nonlocal strain gradient isogeometric model for free vibration analysis of magneto-electro-elastic functionally graded nanoplates. Composite Structures, 316, 117005(2023) [32] KHANIKI, H. B. Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model. Physica E: Low-Dimensional Systems and Nanostructures, 99, 310-319(2018) [33] FANG, J., YIN, B., ZHANG, X., and YANG, B. Size-dependent vibration of functionally graded rotating nanobeams with different boundary conditions based on nonlocal elasticity theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(6), 2756-2774(2022) [34] EBRAHIMI, F. and HAGHI, P. Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment. Advances in Nano Research, 6(3), 201(2018) [35] EBRAHIMI, F. and DABBAGH, A. Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory. Journal of Electromagnetic Waves and Applications, 32(2), 138-169(2018) [36] RAHMANI, A., SAFAEI, B., and QIN, Z. On wave propagation of rotating viscoelastic nanobeams with temperature effects by using modified couple stress-based nonlocal Eringen's theory. Engineering with Computers, 38, 2681-2701(2022) [37] EBRAHIMI, F., BARATI, M. R., and HAGHI, P. Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory. Journal of Vibration and Control, 24(17), 3809-3818(2018) [38] SHAAT, M. A general nonlocal theory and its approximations for slowly varying acoustic waves. International Journal of Mechanical Sciences, 130, 52-63(2017) [39] FAROUGHI, S., RAHMANI, A., and FRISWELL, M. On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model. Applied Mathematical Modelling, 80, 169-190(2020) [40] RAHMANI, A., FAROUGHI, S., and FRISWELL, M. I. The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory. Mechanical Systems and Signal Processing, 144, 106854(2020) [41] FAROUGHI, S. and SHAAT, M. Poisson's ratio effects on the mechanics of auxetic nanobeams. European Journal of Mechanics-A/Solids, 70, 8-14(2018) [42] LI, H. N., CHENG, L., SHEN, J. P., and YAO, L. Q. Vibration analysis of rotating functionally graded piezoelectric nanobeams based on the nonlocal elasticity theory. Journal of Vibration Engineering and Technologies, 9, 1155-1173(2021) [43] WANG, X. Y., LUO, Q. Y., LI, C., and XIE, Z. Y. On the out-of-plane vibration of rotating circular nanoplates. Transactions of Nanjing University of Aeronautics and Astronautics, 39(1), 23-35(2022) [44] EBRAHIMI, F. and BARATI, M. R. Effect of three-parameter viscoelastic medium on vibration behavior of temperature-dependent non-homogeneous viscoelastic nanobeams in a hygro-thermal environment. Mechanics of Advanced Materials and Structures, 25(5), 361-374(2018) [45] MOHAMMADI, M., SAFARABADI, M., RASTGOO, A., and FARAJPOUR, A. Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment. Acta Mechanica, 227, 2207-2232(2016) [46] ABOUELREGAL, A. E., AHMAD, H., NOFAL, T. A., and ABU-ZINADAH, H. Thermo-viscoelastic fractional model of rotating nanobeams with variable thermal conductivity due to mechanical and thermal loads. Modern Physics Letters B, 35(18), 2150297(2021) [47] SHAAT, M. and ABDELKEFI, A. New insights on the applicability of Eringen's nonlocal theory. International Journal of Mechanical Sciences, 121, 67-75(2017) [48] BOYINA, K. and PISKA, R. Wave propagation analysis in viscoelastic Timoshenko nanobeams under surface and magnetic field effects based on nonlocal strain gradient theory. Applied Mathematics and Computation, 439, 127580(2023) [49] ZEIGHAMPOUR, H., TADI-BENI, Y., and KARIMIPOUR, I. Material length scale and nonlocal effects on the wave propagation of composite laminated cylindrical micro/nanoshells. The European Physical Journal Plus, 132, 503(2017) [50] GOPALAKRISHNAN, S. and NARENDAR, S. Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer Science and Business Media, Germany (2013) [51] ELTAHER, M. A., KHATER, M. E., and EMAM, S. A. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Applied Mathematical Modelling, 40(5-6), 4109-4128(2016) |
[1] | Xinte WANG, Juan LIU, Biao HU, Bo ZHANG, Huoming SHEN. Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1821-1840. |
[2] | Zhaonian LI, Juan LIU, Biao HU, Yuxing WANG, Huoming SHEN. Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 35-52. |
[3] | Weibin WEN, Shibin LUO, Shengyu DUAN, Jun LIANG, Daining FANG. Improved quadratic isogeometric element simulation of one-dimensional elastic wave propagation with central difference method [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(5): 703-716. |
[4] | Shan JIANG, Longxiang DAI, Hao CHEN, Hongping HU, Wei JIANG, Xuedong CHEN. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 411-422. |
[5] | Haijuan ZHANG, Jian MA, Hu DING, Liqun CHEN. Vibration of axially moving beam supported by viscoelastic foundation [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(2): 161-172. |
[6] | M. MOHAMMADIMEHR, M. J. FARAHI, S. ALIMIRZAEI. Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(10): 1375-1392. |
[7] | U. GÜVEN. General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(10): 1305-1318. |
[8] | A. M. ABD-ALLA;S. M. ABO-DAHAB. Effect of magnetic field on poroelastic bone model for internal remodeling [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(7): 889-906. |
[9] | A. M. ABD-ALLA;G. A. YAHYA. Thermal stresses in infinite circular cylinder subjected to rotation [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(8): 1059-1078. |
[10] | Wei-yun CHEN;Tang-dai XIA;Wei CHEN;Chao-jiao ZHAI. Propagation of plane P-waves at interface between elastic solid and unsaturated poroelastic medium [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(7): 829-844. |
[11] | B. SINGH. Influence of magnetic field on wave propagation at liquid-microstretch solid interface [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(5): 595-602. |
[12] | Rajneesh Kumar;Tarun Kansal. Effect of relaxation times on circular crested waves in thermoelastic diffusive plate [J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(4): 493-500. |
[13] | HOU Xiu-Hui;DENG Zi-Chen;ZHOU Jia-Xi. Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures [J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(11): 1371-1382. |
[14] | Zafar Iqbal;Muhammad Nawaz Naeem;Nazra Sultana;Shahid Hussain Arshad;Abdul Ghafar Shah. Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach [J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(11): 1393-1404. |
[15] | Rajneesh Kumar;Tarun Kansa. Propagation of Rayleigh waves on free surface of transversely isotropic generalized thermoelastic diffusion [J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(11): 1451-1462 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||