[1] ECHETO, J., SANTOS, M., and ROMANA, M. G. Automated vehicles in swarm configuration: simulation and analysis. Neurocomputing, 501, 679-693 (2022) [2] LIU, Y. B., HUO, L. J., WU, J., and BASHIR, A. K. Swarm learning-based dynamic optimal management for traffic congestion in 6G-driven intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 24, 7831-7846 (2023) [3] ORFANUS, D., DE FREITAS, E. P., and ELIASSEN, F. Self-organization as a supporting paradigm for military UAV relay networks. IEEE Communications Letters, 20, 804-807 (2016) [4] LIU, D. X., WANG, J. L., XU, K., XU, Y. H., YANG, Y., XU, Y. T., WU, Q. H., and ANPALAGAN, A. Task-driven relay assignment in distributed UAV communication networks. IEEE Transactions on Vehicular Technology, 68, 11003-11017 (2019) [5] MAJID, M., HABIB, S., JAVED, R., RIZWAN, M., SRIVASTAVA, G., GADEKALLU, T. R., and JERRY, C. W. Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: a systematic literature review. Sensors, 22, 2087 (2022) [6] TEMENE, N., SERGIOU, C., GEORGIOU, C., and VASSILIOU, V. A survey on mobility in wireless sensor networks. Ad Hoc Networks, 125, 102726 (2022) [7] WANG, X. H., LI, X. S., HUANG, N. J., and O'REGAN, D. Asymptotical consensus of fractional-order multi-agent systems with current and delay states. Applied Mathematics and Mechanics (English Edition), 40, 1677-1694 (2019) https://doi.org/10.1007/s10483-019-2533-8 [8] MAO, X. C. and WANG, Z. H. Stability, bifurcation, and synchronization of delay-coupled ring neural networks. Nonlinear Dynamics, 84, 1063-1078 (2016) [9] MU, R. J., CHEN, J. Y., PENG, K. K., ZHANG, X., DENG, Y. P., and CUI, N. G. Finite-time super-twisting controller based on SESO design for RLV re-entry phase. IEEE Access, 7, 37371-37380 (2019) [10] MAO, X. C., LI, X. Y., DING, W. J., WANG, S., ZHOU, X. Y., and QIAO, L. Dynamics of a multiplex neural network with delayed couplings. Applied Mathematics and Mechanics (English Edition), 42, 441-456 (2021) https://doi.org/10.1007/s10483-021-2709-6 [11] MAO, X. C. and DING, W. J. Nonlinear dynamics and optimization of a vibration reduction system with time delay. Communications in Nonlinear Science and Numerical Simulation, 122, 107220 (2023) [12] WANG, X. H. and HUANG, N. J. Finite-time consensus of multi-agent systems driven by hyperbolic partial differential equations via boundary control. Applied Mathematics and Mechanics (English Edition), 42, 1799-1816 (2021) https://doi.org/10.1007/s10483-021-2789-6 [13] HE, W. L., XU, B., HAN, Q. L., and QIAN, F. Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies. IEEE Transactions on Cybernetics, 50, 2996-3008 (2019) [14] LI, D. Y., GE, S. S., and LEE, T. H. Fixed-time-synchronized consensus control of multiagent systems. IEEE Transactions on Control of Network Systems, 8, 89-98 (2020) [15] LI, X. M., ZHOU, Q., LI, P. S., LI, H. Y., and LU, R. Q. Event-triggered consensus control for multi-agent systems against false data-injection attacks. IEEE Transactions on Cybernetics, 50, 1856-1866 (2019) [16] ZHAO, W. B., LIU, H., and LEWIS, F. L. Robust formation control for cooperative underactuated quadrotors via reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 32, 4577-4587 (2020) [17] ZHOU, Z., WANG, H. B., WANG, Y. L., XUE, X. J., and ZHANG, M. Q. Distributed formation control for multiple quadrotor UAVs under Markovian switching topologies with partially unknown transition rates. Journal of the Franklin Institute, 356, 5706-5728 (2019) [18] YU, Z. Q., LIU, Z. X., ZHANG, Y. M., QU, Y. H., and SU, C. Y. Distributed finite-time fault-tolerant containment control for multiple unmanned aerial vehicles. IEEE Transactions on Neural Networks and Learning Systems, 31, 2077-2091 (2019) [19] GU, N., WANG, D., PENG, Z. H., and WANG, J. Safety-critical containment maneuvering of underactuated autonomous surface vehicles based on neurodynamic optimization with control barrier functions. IEEE Transactions on Neural Networks and Learning Systems, 34, 2882-2895 (2021) [20] LV, M., DE SCHUTTER, B., and BALDI, S. Nonrecursive control for formation-containment of HFV swarms with dynamic event-triggered communication. IEEE Transactions on Industrial Informatics, 19, 3188-3197 (2022) [21] GONG, J. Y., JIANG, B., MA, Y. L., and MAO, Z. H. Distributed adaptive fault-tolerant formation-containment control with prescribed performance for heterogeneous multiagent systems. IEEE Transactions on Cybernetics (2022) https://doi.org/10.1109/TCYB.2022.3218377 [22] MAHMOOD, A. and KIM, Y. Leader-following formation control of quadcopters with heading synchronization. Aerospace Science and Technology, 47, 68-74 (2015) [23] OH, K. K. and AHN, H. S. Distance-based undirected formations of single-integrator and double-integrator modeled agents in n-dimensional space. International Journal of Robust and Nonlinear Control, 24, 1809-1820 (2014) [24] ZHAO, W. B., LIU, H., and LEWIS, F. L. Data-driven fault-tolerant control for attitude synchronization of nonlinear quadrotors. IEEE Transactions on Automatic Control, 66, 5584-5591 (2021) [25] LIU, H., MA, T., LEWIS, F. L., and WAN, Y. Robust formation control for multiple quadrotors with nonlinearities and disturbances. IEEE Transactions on Cybernetics, 50, 1362-1371 (2018) [26] WANG, C. H., JI, J. C., MIAO, Z. H., and ZHOU, J. Udwadia-Kalaba approach based distributed consensus control for multi-mobile robot systems with communication delays. Journal of the Franklin Institute, 359, 7283-7306 (2022) [27] ZHANG, K. M., ZHENG, X. D., CHENG, Z., LIANG, B., WANG, T. S., and WANG, Q. Non-smooth dynamic modeling and simulation of an unmanned bicycle on a curved pavement. Applied Mathematics and Mechanics (English Edition), 43, 93-112 (2022) https://doi.org/10.1007/s10483-022-2811-5 [28] FLIESS, M., LÉVINE, J., MARTIN, P., and ROUCHON, P. Flatness and defect of non-linear systems: introductory theory and examples. International Journal of Control, 61, 1327-1361 (1995) [29] MELLINGER, D. and KUMAR, V. Minimum snap trajectory generation and control for quadrotors. 2011 IEEE International Conference on Robotics and Automation, IEEE, Shanghai, 2520-2525 (2011) [30] FAESSLER, M., FRANCHI, A., and SCARAMUZZA, D. Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robotics and Automation Letters, 3, 620-626 (2017) [31] AI, X. L. and YU, J. Q. Fixed-time trajectory tracking for a quadrotor with external disturbances: a flatness-based sliding mode control approach. Aerospace Science and Technology, 89, 58-76 (2019) [32] ZHOU, D. J., WANG, Z. J., and SCHWAGER, M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures. IEEE Transactions on Robotics, 34, 916-923 (2018) [33] ZHOU, X., WEN, X. Y., WANG, Z. P., GAO, Y. M., LI, H. J., WANG, Q. H., YANG, T. K., LU, H. J., CAO, Y. J., XU, C., and GAO, F. Swarm of micro flying robots in the wild. Science Robotics, 7, eabm5954 (2022) [34] REN, W. and CAO, Y. C. Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues, Springer, London (2011) [35] TEDRAKE, R. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation (Course Notes for MIT 6.832) (2023) https://underactuated.csail.mit.edu/ [36] LEE, T., LEOK, M., and MCCLAMROCH, N. H. Geometric tracking control of a quadrotor UAV on SE(3). 49th IEEE Conference on Decision and Control, IEEE, Atlanta, GA, 5420-5425 (2010) |