Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (1): 39-68.doi: https://doi.org/10.1007/s10483-024-3073-9
• Articles • Previous Articles Next Articles
Xiuchen GONG, Yinghao NIE*(), Gengdong CHENG, Kai LI
Received:
2023-08-31
Online:
2024-01-01
Published:
2023-12-26
Contact:
Yinghao NIE
E-mail:nieyh@dlut.edu.cn
Supported by:
2010 MSC Number:
Xiuchen GONG, Yinghao NIE, Gengdong CHENG, Kai LI. Effect of boundary conditions on shakedown analysis of heterogeneous materials. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 39-68.
1 | KÖNIG, J. Shakedown of Elastic-Plastic Structures, Elsevier, Amsterdam (2012) |
2 | PENG, H., LIU, Y., CHEN, H., and ZHANG, Z. Shakedown analysis of bounded kinematic hardening engineering structures under complex cyclic loads: theoretical aspects and a direct approach. Engineering Structures, 256, 114034 (2022) |
3 | DO, H., and NGUYEN-XUAN, H. Limit and shakedown isogeometric analysis of structures based on Bézier extraction. European Journal of Mechanics A-Solids, 63, 149- 164 (2017) |
4 | LI, K., CHENG, G., WANG, Y., and LIANG, Y. A novel primal-dual eigenstress-driven method for shakedown analysis of structures. International Journal for Numerical Methods in Engineering, 122 (11), 2770- 2801 (2021) |
5 | CHEN, G., BEZOLD, A., and BROECKMANN, C. Influence of the size and boundary conditions on the predicted effective strengths of particulate reinforced metal matrix composites (PRMMCs). Composite Structures, 189, 330- 339 (2018) |
6 | CHEN, G., XIN, S., ZHANG, L., and BROECKMANN, C. Statistical analyses of the strengths of particulate reinforced metal matrix composites (PRMMCs) subjected to multiple tensile and shear stresses. Chinese Journal of Mechanical Engineering, 34 (1), 1- 12 (2021) |
7 | HACHEMI, A., CHEN, M., CHEN, G., and WEICHERT, D. Limit state of structures made of heterogeneous materials. International Journal of Plasticity, 63, 124- 137 (2014) |
8 | LE, C., NGUYEN, P., ASKES, H., and PHAM, D. A computational homogenization approach for limit analysis of heterogeneous materials. International Journal for Numerical Methods in Engineering, 112 (10), 1381- 1401 (2017) |
9 | LI, H., and YU, H. A non-linear programming approach to kinematic shakedown analysis of composite materials. International Journal for Numerical Methods in Engineering, 66 (1), 117- 146 (2006) |
10 | NGUYEN, P., and LE, C. Failure analysis of anisotropic materials using computational homogenised limit analysis. Computers Structures, 256, 106646 (2021) |
11 | MAGOARIEC, H., BOURGEOIS, S., and DÉBORDES, O. Elastic plastic shakedown of 3D periodic heterogeneous media: a direct numerical approach. International Journal of Plasticity, 20 (8-9), 1655- 1675 (2004) |
12 | GARCEA, G., and LEONETTI, L. A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis. International Journal for Numerical Methods in Engineering, 88 (11), 1085- 1111 (2011) |
13 | MELAN, E. Zur Plastizität des räumlichen Kontinuums. Ingenieur-Archiv, 9 (2), 116- 126 (1938) |
14 | KOITER, W. General theorems for elastic plastic solids. Progress in Solid Mechanics, 1, 165- 221 (1960) |
15 | WEICHERT, D. On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures. International Journal of Plasticity, 2 (2), 135- 148 (1986) |
16 | FRANÇOIS, A., ABDELKADER, H., HOAI, AN L., SAID, M., and TAO, P. Application of lower bound direct method to engineering structures. Journal of Global Optimization, 37 (4), 609- 630 (2007) |
17 | RI, J., and HONG, H. A basis reduction method using proper orthogonal decomposition for shakedown analysis of kinematic hardening material. Computational Mechanics, 64 (1), 1- 13 (2019) |
18 | CHEN, M. and HACHEMI, A. Progress in plastic design of composites. Direct Methods for Limit States in Structures and Materials(eds. SPILIOPOULOS, K. and WEICHERT, D.), Springer, Dordrecht, 119-138 (2014) |
19 | KLEBANOV, J., and BOYLE, J. Shakedown of creeping structures. International Journal of Solids Structures, 35 (23), 3121- 3133 (1998) |
20 | YAN, J., CHENG, G., LIU, S., and LIU, L. Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure. International Journal of Mechanical Sciences, 48 (4), 400- 413 (2006) |
21 | YAN, J., CHENG, G., LIU, S., and LIU, L. Prediction of equivalent elastic properties of truss materials with periodic microstructure and the scale effects (in Chinese). Chinese Journal of Solid Mechanics, 26 (4), 421- 428 (2005) |
22 | HEITZER, M., POP, G., and STAAT, M. Basis reduction for the shakedown problem for bounded kinematic hardening material. Journal of Global Optimization, 17 (1), 185- 200 (2000) |
23 | PENG, H., LIU, Y., and CHEN, H. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures. Computational Mechanics, 63, 1- 22 (2019) |
24 | PENG, H., and LIU, Y. Stress compensation method for structural shakedown analysis. Key Engineering Materials, 794, 169- 181 (2019) |
25 | TARN, J., DVORAK, G., and RAO, M. Shakedown of unidirectional composites. International Journal of Solids Structures, 11 (6), 751- 764 (1975) |
26 | WEICHERT, D., HACHEMI, A., and SCHWABE, F. Application of shakedown analysis to the plastic design of composites. Archive of Applied Mechanics, 69 (9), 623- 633 (1999) |
27 | WEICHERT, D., HACHEMI, A., and SCHWABE, F. Shakedown analysis of composites. Mechanics Research Communications, 26, 309- 318 (1999) |
28 | CHEN, M., HACHEMI, A., and WEICHERT, D. Shakedown and optimization analysis of periodic composites. Limit State of Materials and Structures(eds. DE SAXCÉ, G., OUESLATI, A., CHARKALUK, E., and TRITSCH, J.), Springer, London, 45-69 (2013) |
29 | CHEN, M., ZHANG, L., WEICHERT, D., and TANG, W. Shakedown and limit analysis of periodic composites. PAMM: Proceedings in Applied Mathematics and Mechanics, 9 (1), 415- 416 (2009) |
30 | RI, J., and HONG, H. A basis reduction method using proper orthogonal decomposition for lower bound shakedown analysis of composite material. Archive of Applied Mechanics, 88 (10), 1843- 1857 (2018) |
31 | RI, J., RI, U., HONG, H., and KWAK, C. Eigenstress-based shakedown analysis for estimation of effective strength of composites under variable load. Composite Structures, 280, 114851 (2022) |
32 | XIA, Z., ZHOU, C., YONG, Q., and WANG, X. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. International Journal of Solids Structures, 43 (2), 266- 278 (2006) |
33 | MURA, T Micromechanics of Defects in Solids, Springer Science & Business Media, Berlin (2013) |
34 | MACKENZIE, D., SHI, J., and BOYLE, J. Finite element modelling for limit analysis by the elastic compensation method. Computers Structures, 51, 403- 410 (1994) |
35 | CHEN, H. Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress. Journal of Pressure Vessel Technology, 132 (1), 011202 (2010) |
36 | BORINO, G., and POLIZZOTTO, C. Dynamic shakedown of structures with variable appended masses and subjected to repeated excitations. International Journal of Plasticity, 12, 215- 228 (1996) |
37 | CHRISTIANSEN, E., and ANDERSEN, K. Computation of collapse states with von Mises type yield condition. International Journal for Numerical Methods in Engineering, 46, 1185- 1202 (1998) |
38 | HACHEMI, A., and WEICHERT, D. Numerical shakedown analysis of damaged structures. Computer Methods in Applied Mechanics and Engineering, 160, 57- 70 (1998) |
39 | SIMON, J. Limit states of structures in n-dimensional loading spaces with limited kinematical hardening. Computers Structures, 147, 4- 13 (2015) |
40 | Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual(2023) http://www.gurobi.com |
41 | GRANT, M. and BOYD, S. CVX: Matlab Software for Disciplined Convex Programming, version 2.1 (2014) http://cvxr.com/cvx |
42 | HORI, M., and NEMAT-NASSER, S. On two micromechanics theories for determining micro-macro relations in heterogeneous solids. Mechanics of Materials, 31 (10), 667- 682 (1999) |
43 | NIE, Y., LI, Z., and CHENG, G. Efficient prediction of the effective nonlinear properties of porous material by FEM-cluster based analysis (FCA). Computer Methods in Applied Mechanics Engineering, 383, 113921 (2021) |
44 | ANDERSEN, M., POULSEN, P., and OLESEN, J. Partially mixed lower bound constant stress tetrahedral element for finite element limit analysis. Computers Structures, 258, 106672 (2022) |
45 | ZHANG, H., LIU, Y., and XU, B. Plastic limit analysis of ductile composite structures from micro- to macro-mechanical analysis. Acta Mechanica Solida Sinica, 22 (1), 73- 84 (2009) |
46 | NIE, Y., LI, Z., GONG, X., and CHENG, G. Fast construction of cluster interaction matrix for data-driven cluster-based reduced-order model and prediction of elastoplastic stress-strain curves and yield surface. Computer Methods in Applied Mechanics Engineering, 418, 116480 (2024) |
[1] | ZHENG Quan-shui;ZOU Wen-nan. ORIENTATION DISTRIBUTION FUNCTIONS FOR MICROSTRUCTURES OF HETEROGENEOUS MATERIALS (Ⅰ) ─ DIRECTIONAL DISTRIBUTION FUNCTIONS AND IRREDUCIBLE TENSORS [J]. Applied Mathematics and Mechanics (English Edition), 2001, 22(8): 865-884. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||