Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (9): 1481-1498.doi: https://doi.org/10.1007/s10483-024-3146-9
• Articles • Previous Articles Next Articles
Tongxiao JIANG1, Deming NIE1,*(), Jianzhong LIN2,3
Received:
2024-03-03
Online:
2024-09-01
Published:
2024-08-27
Contact:
Deming NIE
E-mail:nieinhz@cjlu.edu.cn
Supported by:
2010 MSC Number:
Tongxiao JIANG, Deming NIE, Jianzhong LIN. Swimming velocity of spherical squirmers in a square tube at finite fluid inertia. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1481-1498.
1 | ZHAO, G., SANCHEZ, S., SCHMIDT, O. G., and PUMERA, M. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale, 5 (7), 2909- 2914 (2013) |
2 | GAO, W., and WANG, J. The environmental impact of micro/nanomachines: a review. ACS Nano, 8 (4), 3170- 3180 (2014) |
3 | MOO, J. G. S., and PUMERA, M. Chemical energy powered nano/micro/macromotors and the environment. Chemistry-A European Journal, 21 (1), 58- 72 (2015) |
4 | DI LEONARDO, R., ANGELANI, L., DELL'ARCIPRETE, D., RUOCCO, G., LEBBA, V., SCHIPPA, S., CONTE, M. P., MECARINI, F., DE ANGELIS, F., and DI FABRIZIO, E. Bacterial ratchet motors. Proceedings of the National Academy of Sciences, 107 (21), 9541- 9545 (2010) |
5 | GUIX, M., WEIZ, S. M., SCHMIDT, O. G., and MEDINA-SÁNCHEZ, M. Self-propelled micro/nanoparticle motors. Particle & Particle Systems Characterization, 35 (2), 1700382 (2018) |
6 | MHANNA, R., QIU, F., ZHANG, L., DING, Y., SUGIHARA, K., ZENOBI-WONG, M., and NELSON, B. J. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small, 10 (10), 1953- 1957 (2014) |
7 | WU, Z., LIN, X., SI, T., and HE, Q. Recent progress on bioinspired self-propelled micro/nanomotors via controlled molecular self-assembly. Small, 12 (23), 3080- 3093 (2016) |
8 | LUSHI, E., WIOLAND, H., and GOLDSTEIN, R. E. Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proceedings of the National Academy of Sciences, 111 (27), 9733- 9738 (2014) |
9 | DRESCHER, K., LEPTOS, K. C., TUVAL, I., ISHIKAWA, T., PEDLEY, T. J., and GOLDSTEIN, R. E. Dancing volvox: hydrodynamic bound states of swimming algae. Physical Review Letters, 102 (16), 168101 (2009) |
10 | SANCHEZ, T., CHEN, D. T. N., DECAMP, S. J., HEYMANN, M., and DOGIC, Z. Spontaneous motion in hierarchically assembled active matter. nature, 491 (7424), 431- 434 (2012) |
11 | WILLIAMS, B. J., ANAND, S. V., RAJAGOPALAN, J., and SAIF, M. T. A. A self-propelled biohybrid swimmer at low Reynolds number. Nature Communications, 5 (1), 3081 (2014) |
12 | CELI, N., GONG, D., and CAI, J. Artificial flexible sperm-like nanorobot based on self-assembly and its bidirectional propulsion in precessing magnetic fields. Scientific Reports, 11 (1), 21728 (2021) |
13 | WANG, Y., CHEN, H., LAW, J., DU, X., and YU, J. Ultrafast miniature robotic swimmers with upstream motility. Cyborg and Bionic Systems, 4, 0015 (2023) |
14 | SONNTAG, L., SIMMCHEN, J., and MAGDANZ, V. Nano- and micromotors designed for cancer therapy. Molecules, 24 (18), 3410 (2019) |
15 | LI, J., ESTEBAN-FERNÁNDEZ, D. Á. B., GAO, W., ZHANG, L., and WANG, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Science Robotics, 2 (4), eaam6431 (2017) |
16 | WANG, T., JOO, H. J., SONG, S., HU, W., KEPLINGER, C., and SITTI, M. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation. Science Advances, 9 (15), eadg0292 (2023) |
17 | LIGHTHILL, M. J. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Communications on Pure and Applied Mathematics, 5 (2), 109- 118 (1952) |
18 | BLAKE, J. R. A spherical envelope approach to ciliary propulsion. Journal of Fluid Mechanics, 46 (1), 199- 208 (1971) |
19 | BLAKE, J. R. Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number. Bulletin of the Australian Mathematical Society, 5 (2), 255- 264 (1971) |
20 | ZÖTTL, A., and STARK, H. Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow. The European Physical Journal E, 36, 1- 10 (2013) |
21 | QI, T. T., LIN, J. Z., OUYANG, Z. Y., and ZHU, J. Settling mode of a bottom-heavy squirmer in a narrow vessel. Soft Matter, 19 (4), 652- 669 (2023) |
22 | LI, S., YING, Y., and NIE, D. Simulation of flow past a squirmer confined in a tube at low Reynolds numbers. Fluid Dynamics Research, 55 (5), 055504 (2023) |
23 | LI, G. J., and ARDEKANI, A. M. Hydrodynamic interaction of microswimmers near a wall. Physical Review E, 90 (1), 013010 (2014) |
24 | KYOYA, K., MATSUNAGA, D., IMAI, Y., OMORI, T., and ISHIKAWA, T. Shape matters: near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers. Physical Review E, 92 (6), 063027 (2015) |
25 | KUHR, J. T., BLASCHKE, J., RÜHLE, F., and STARK, H. Collective sedimentation of squirmers under gravity. Soft Matter, 13 (41), 7548- 7555 (2017) |
26 | RÜHLE, F., and STARK, H. Emergent collective dynamics of bottom-heavy squirmers under gravity. The European Physical Journal E, 43, 1- 17 (2020) |
27 | HAMEL, A., FISCH, C., COMBETTES, L., DUPUIS-WILLIAMS, P., and BAROUD, C. N. Transitions between three swimming gaits in Paramecium escape. Proceedings of the National Academy of Sciences, 108 (18), 7290- 7295 (2011) |
28 | WANG, S., and ARDEKANI, A. Inertial squirmer. Physics of Fluids, 24 (10), 101902 (2012) |
29 | OUYANG, Z., and LIN, J. The hydrodynamics of an inertial squirmer rod. Physics of Fluids, 33 (7), 073302 (2021) |
30 | OUYANG, Z., and PHAN-THIEN, N. Inertial swimming in a tube filled with a power-law fluid. Physics of Fluids, 33 (11), 113312 (2021) |
31 | OUYANG, Z., LIN, Z., YU, Z., LIN, J., and PHAN-THIEN, N. Hydrodynamics of an inertial squirmer and squirmer dumbbell in a tube. Journal of Fluid Mechanics, 939, A32 (2022) |
32 | CHISHOLM, N. G., LEGENDRE, D., LAUGA, E., and KHAIR, A. S. A squirmer across Reynolds numbers. Journal of Fluid Mechanics, 796, 233- 256 (2016) |
33 | MORE, R. V., and ARDEKANI, A. M. Motion of an inertial squirmer in a density stratified fluid. Journal of Fluid Mechanics, 905, A9 (2020) |
34 | LI, G., OSTACE, A., and ARDEKANI, A. M. Hydrodynamic interaction of swimming organisms in an inertial regime. Physical Review E, 94 (5), 053104 (2016) |
35 | KHAIR, A. S., and CHISHOLM, N. G. Expansions at small Reynolds numbers for the locomotion of a spherical squirmer. Physics of Fluids, 26 (1), 011902 (2014) |
36 | LIN, Z., and GAO, T. Direct-forcing fictitious domain method for simulating non-Brownian active particles. Physical Review E, 100 (1), 013304 (2019) |
37 | QIAN, Y. H., D'HUMIÈRES, D., and LALLEMAND, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17 (6), 479 (1992) |
38 | LALLEMAND, P., and LUO, L. S. Lattice Boltzmann method for moving boundaries. Journal of Computational Physics, 184 (2), 406- 421 (2003) |
39 | GLOWINSKI, R., PAN, T. W., HESLA, T. I., JOESEPH, D. D., and PÉRIAUX, J. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. Journal of Computational Physics, 169 (2), 363- 426 (2001) |
[1] | LIU Ma-Lin. Numerical simulation of particle sedimentation in 3D rectangular channel [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(9): 1147-1158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||