Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (9): 1633-1654.doi: https://doi.org/10.1007/s10483-024-3147-6
• Articles • Previous Articles Next Articles
Zhichao ZHANG1,2, Xingzhe WANG1,*()
Received:
2024-05-02
Online:
2024-09-01
Published:
2024-08-27
Contact:
Xingzhe WANG
E-mail:xzwang@lzu.edu.cn
Supported by:
2010 MSC Number:
Zhichao ZHANG, Xingzhe WANG. Analytical modeling and approaches of multihelix cables incorporating with interwire mutual contacts. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1633-1654.
Fig. 8
Overall axial force and moment in the 3 × 3 cable subjected to external axial loading for different helical angles: (a) axial force F3(2) versus εappl; (b) axial twisting moment M3(2) versus εappl; (c) axial force F3(2) versus τappl; (d) axial twisting moment M3(2) versus τappl (color online)"
1 | FEYRER, K. Wire Ropes: Tension, Endurance, Reliability, Springer, Heidelberg (2006) |
2 | MEYERS, M. A., CHEN, P. Y., LIN, Y. M., and SEKI, Y. Biological materials: structure and mechanical properties. Progress in Materials Science, 53, 1- 206 (2008) |
3 | POKROY, B., KANG, S. H., MAHADEVAN, L., and AIZENBERG, J. Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science, 323, 237- 240 (2009) |
4 | TROFIMOV, A., ABAIMOV, S., AKHATOV, I., and SEVOSTIANOV, I. Effect of elastic contrast on the contribution of helical fibers into overall stiffness of a composites. International Journal of Engineering Science, 120, 31- 50 (2017) |
5 | COSTELLO, G. A., and PHILIPS, J. W. Effective Modulus of twisted wire cables. ASCE, Journal of the Engineering Mechanics Division, 102, 171- 81 (1976) |
6 | KUMAR, K., and COCHRAN, J. E. Closed-form analysis for elastic deformations of multilayered strand. Journal of Applied Mechanics, 54, 898- 903 (1987) |
7 | RAOOF, M., and HOBBS, R. E. Analysis of Multilayered Structural Strands. Journal of Engineering Mechanics, 114 (7), 1166- 1182 (1988) |
8 | KNAPP, R. H. Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion. International Journal for Numerical Methods in Engineering, 14 (4), 515- 529 (2010) |
9 | COSTELLO, G. A. Theory of Wire Cables, Springer-Verlag, New York (1990) |
10 | SATHIKH, S., MOORTHY, M. B. K., and KRISHNAN, M. A symmetric linear elastic model for helical wire strands under axisymmetric loads. The Journal of Strain Analysis for Engineering Design, 31 (50), 389- 399 (1996) |
11 | WOLFE, P. The effect of bending stiffness on inextensible cables. International Journal of Engineering Science, 30 (9), 1187- 1192 (1992) |
12 | ZHAO, Z. L., ZHAO, H. P., WANG, J. S., ZHANG, Z., and FENG, X. Q. Mechanical properties of carbon nanotube cables with hierarchical helical structures. Journal of the Mechanics and Physics of Solids, 71, 64- 83 (2014) |
13 | GHOREISHI, S. R., MESSAGER, T., CARTRAUD, P., and DAVIES, P. Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model. International Journal of Mechanical Sciences, 49 (11), 1251- 1261 (2007) |
14 | HUANG, N. C. Finite extension of an elastic strand with a central core. Journal of Applied Mechanics, 45, 852- 858 (1978) |
15 | KUMAR, K., and BOTSIS, J. Contact stresses in multilayered strands under tension and torsion. Journal of Applied Mechanics, 68, 432- 40 (2001) |
16 | GNANAVEL, B. K., and PARTHASARATHY, N. S. Effect of interfacial contact forces in radial contact wire strand. Archive of Applied Mechanics, 81, 303- 317 (2011) |
17 | ARGATOV, I. Response of a wire cable strand to axial and torsional loads: asymptotic modeling of the effect of interwire contact deformations. International Journal of Solids and Structures, 48, 1413- 1423 (2011) |
18 | JIANG, W. G., YAO, M. S., and WALTON, J. M. A concise finite element model for simple straight wire cable strand. International Journal of Mechanical Sciences, 41, 143- 461 (1999) |
19 | JIANG, W. G., WARBY, M. K., and HENSHAL, J. L. Statically indeterminate contacts in axially loaded wire strand. European Journal of Mechanics A/Solids, 27 (1), 69- 78 (2008) |
20 | ZHANG, Z. C, WANG, X. Z., and LI, Q. G. Responds of a helical triple-wire strand with interwire contact deformation and friction under axial and torsional loads. European Journal of Mechanics A/Solids, 73, 34- 46 (2019) |
21 | CHEN, Y., TAN, H., and QIN, W. Semi-analytical analysis of the interwire multi-state contact behavior of a three-layered wire rope strand. International Journal of Solids and Structures, 202, 136- 152 (2020) |
22 | PHILLIPS, J. W., and COSTELLO, G. A. Analysis of wire cables with internal-wire-rope cores. Journal of Applied Mechanics, 52, 510- 516 (1985) |
23 | UTTING, W. S., and JONES, N. The response of wire rope strands to axial tensile loads, part Ⅰ: experimental results and theoretical predictions. International Journal of Mechanical Sciences, 29 (9), 605- 619 (1987) |
24 | UTTING, W. S., and JONES, N. The response of wire rope strands to axial tensile loads, part Ⅱ: comparison of experimental results and theoretical predictions. International Journal of Mechanical Sciences, 29 (9), 621- 636 (1987) |
25 | ELATA, D., ESHKENAZY, R., and WEISS, M. P. The mechanical behavior of a wire rope with an independent wire rope core. International Journal of Solids and Structures, 41 (5-6), 1157- 1172 (2004) |
26 | LOVE, A. E. H. A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York (1944) |
27 | ASHKENAZI, R., WEISS, M. P., and ELATA, D. Torsion and bending stresses in wires of non-rotating tower crane cables. OIPEEC Technical Meeting: Experiences with Cables, Lenzburg, Suiza (2003) |
28 | RAMSEY, H. A theory of thin rods with application to helical constituent wires in cables. International Journal of Mechanical Sciences, 30 (8), 559- 570 (1988) |
29 | USABIAGA, H., and PAGALDAY, J. M. Analytical procedure for modelling recursively and wire by wire stranded cables subjected to traction and torsion loads. International Journal of Solids and Structures, 45, 5503- 5520 (2008) |
30 | QIN, J., WARNET, L. L., WU, Y., and NIJHUIS, A. CORD, a novel numerical mechanical model for Nb3Sn CICCs. IEEE Transactions on Applied Superconductivity, 21 (3), 2046- 2049 (2011) |
31 | QIN, J., WU, Y., WARNET, L. L., and NIJHUIS, A. A novel numerical mechanical model for the stress-strain distribution in superconducting cable-in-conduit conductors. Superconductor Science Technology, 24 (6), 065012 (2011) |
32 | XIANG, L., WANG, H. Y., CHEN, Y., GUAN, Y. J., WANG, Y. L., and DAI, L. H. Modeling of multi-strand wire ropes subjected to axial tension and torsion loads. International Journal of Solids and Structures, 58, 233- 246 (2015) |
33 | XIANG, L., WANG, H. Y., CHEN, Y., GUAN, Y. J., and DAI, L. H. Elastic-plastic modelling of metallic strands and wire ropes under axial tension and torsion loads. International Journal of Solids and Structures, 129, 103- 118 (2017) |
34 | FRALDI, M., PERRELLA, G., CIERVO, M., BOSIA, F., and PUGNO, N. M. A hybrid probabilistic-deterministic approach to model the mechanical response of helically arranged hierarchical strands. Journal of the Mechanics and Physics of Solids, 106, 338- 352 (2017) |
35 | DE MENEZES, E. A., LISBÔA, T. V., and MARCZAK, R. J. A novel finite element for nonlinear static and dynamic analyses of helical cables. Engineering Structures, 293, 116622 (2023) |
36 | LIU, L., LIU, D., WU, X., and HE, Y. Optimal structural patterns of multi-strand wire ropes. International Journal of Solids and Structures, 225, 111070 (2021) |
37 | LIU, L., ZHENG, S., and LIU, D. Effect of lay direction on the mechanical behavior of multi-strand wire ropes. International Journal of Solids and Structures, 185, 89- 103 (2020) |
38 | LIU, D., ZHENG, S., and HE, Y. Effect of friction on the mechanical behavior of wire rope with hierarchical helical structures. Mathematics and Mechanics of Solids, 24 (7), 2154- 2180 (2019) |
39 | NEMOV, A. S., BOSO, D. P., VOYNOV, I. B., BOROVKOV, A. I., and SCHREFLER, B. A. Generalized stiffness coefficients for ITER superconducting cables, direct FE modeling and initial configuration. Cryogenics, 50 (5), 304- 313 (2010) |
40 | LI, Y. X., WANG, X., GAO, Y. W., and ZHOU, Y. H. Modeling for mechanical response of CICC by hierarchical approach and ABAQUS simulation. Fusion Engineering & Design, 88 (11), 2907- 2917 (2013) |
[1] | Shijing GAO, Lele ZHANG, Jinxi LIU, Guoquan NIE, Weiqiu CHEN. Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 649-662. |
[2] | Lei ZHANG. Mechanical effects of circular liquid inclusions inside soft matrix: role of internal pressure change and surface tension [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 501-510. |
[3] | Mengdie NIU, Jing XIA, Huadong YONG, Youhe ZHOU. Quench characteristics and mechanical responses during quench propagation in rare earth barium copper oxide pancake coils [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(2): 235-250. |
[4] | X. WANG, W. T. ANG, H. FAN. A micromechanical model based on hypersingular integro-differential equations for analyzing micro-crazed interfaces between dissimilar elastic materials [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(2): 193-206. |
[5] | Liyuan ZHANG, Cheng ZHANG, Xiqiao FENG, Huajian GAO. Snapping instability in prismatic tensegrities under torsion [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(3): 275-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||