1 |
CHENG, C. M., PENG, Z. K., ZHANG, W. M., and MENG, G. Volterra-series-based nonlinear system modeling and its engineering applications: a state-of-the-art review. Mechanical Systems and Signal Processing, 87, 340- 364 (2017)
|
2 |
WU, P., ZHAO, Y., and XU, X. Power spectral density analysis for nonlinear systems based on Volterra series. Applied Mathematics and Mechanics (English Edition), 42 (12), 1743- 1758 (2021)
doi: 10.1007/s10483-021-2794-7
|
3 |
CHENG, C. M., BAI, E. W., and PENG, Z. K. Consistent variable selection for a nonparametric nonlinear system by inverse and contour regressions. IEEE Transactions on Automatic Control, 64 (7), 2653- 2664 (2019)
|
4 |
CHENG, C., and BAI, E. W. Variable selection according to goodness of fit in nonparametric nonlinear system identification. IEEE Transactions on Automatic Control, 66 (7), 3184- 3196 (2021)
|
5 |
SUN, B., CAI, Q. Y., PENG, Z. K., CHENG, C. M., WANG, F., and ZHANG, H. Z. Variable selection and identification of high-dimensional nonparametric nonlinear systems by directional regression. Nonlinear Dynamics, 111 (13), 12101- 12112 (2023)
|
6 |
LJUNG, L. System Identification: Theory for the User, 2nd ed., Prentice Hall, New York (1999)
|
7 |
SODERSTROM, T. and STOICA, P. System Identification, 1st ed., Prentice Hall, New York (1989)
|
8 |
CHENG, C., BAI, E. W., and PENG, Z. Identification of sparse Volterra systems: an almost orthogonal matching pursuit approach. IEEE Transactions on Automatic Control, 67 (4), 2027- 2032 (2022)
|
9 |
JANCZAK, A. Identification of Nonlinear Systems Using Neural Networks and Polynomial Models, 1st ed., Springer, Berlin, Heidelberg (2005)
|
10 |
PIRODDI, L., and SPINELLI, W. An identification algorithm for polynomial NARX models based on simulation error minimization. International Journal of Control, 76 (17), 1767- 1781 (2003)
|
11 |
BREIMAN, L. Better subset regression using the nonnegative garrote. Technometrics, 37 (4), 373- 384 (1995)
|
12 |
HU, J., and ZHANG, S. Global sensitivity analysis based on high-dimensional sparse surrogate construction. Applied Mathematics and Mechanics (English Edition), 38 (6), 797- 814 (2017)
doi: 10.1007/s10483-017-2208-8
|
13 |
BAI, E. W., and CHAN, K. S. Identification of an additive nonlinear system and its applications in generalized Hammerstein models. Automatica, 44, 430- 436 (2008)
|
14 |
FAN, J. Q. and YAO, Q. W. Nonlinear Time Series, 1st ed., Springer, New York (2003)
|
15 |
FAN, J. Q. Local Polynomial Modelling and Its Applications, 1st ed., Routledge, New York (1996)
|
16 |
TEMPO, R., CALAFIORE, G., and DABBENE, F. Randomized Algorithms for Analysis and Control of Uncertain Systems: With Applications, 2nd ed., Springer, London (2013)
|
17 |
BAI, E. W., LI, K., ZHAO, W. X., and XU, W. Y. Kernel-based approaches to local nonlinear non-parametric variable selection. Automatica, 50 (1), 100- 113 (2014)
|
18 |
TIBSHIRANI, R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58 (1), 267- 288 (1996)
|
19 |
FRIEDMAN, J., HASTIE, T., HÖFLING, H., and TIBSHIRANI, R. Pathwise coordinate optimization. The Annals of Applied Statistics, 1 (2), 302- 332 (2007)
|
20 |
ZOU, H. The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101 (476), 1418- 1429 (2006)
|
21 |
YUAN, M., and LIN, Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B: Statistical Methodology, 68 (1), 49- 67 (2006)
|
22 |
EFRON, B., HASTIE, T., JOHNSTONE, I., and TIBSHIRANI, R. Least angle regression. The Annals of Statistics, 32 (2), 407- 499 (2004)
|
23 |
FAN, J. Q., and LI, R. Z. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96 (456), 1348- 1360 (2001)
|
24 |
FAN, J. Q., and PENG, H. Nonconcave penalized likelihood with a diverging number of parameters. The Annals of Statistics, 32 (3), 928- 961 (2004)
|
25 |
BAI, E. W., CHENG, C. M., and ZHAO, W. X. Variable selection of high-dimensional non-parametric nonlinear systems by derivative averaging to avoid the curse of dimensionality. Automatica, 101, 138- 149 (2019)
|
26 |
BAI, E. W. Non-parametric nonlinear system identification: an asymptotic minimum mean squared error estimator. IEEE Transactions on Automatic Control, 55 (7), 1615- 1626 (2010)
|
27 |
FOLLAND, G. B. Fourier Analysis and Its Applications, 1st ed. American Mathematical Society, California (1992)
|