Articles

Surface effects on mechanical behavior of elastic nanoporous materials under high strain

Expand
  • School of Aeronautics Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-06-17

  Revised date: 2014-11-13

  Online published: 2015-07-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 11472025, 10932001, and 11272030)

Abstract

This paper studies surface effects on the mechanical behavior of nanoporous materials under high strains with an improved anisotropic Kelvin model. The stress-strain relations are derived by the theories of Euler-Bernoulli beam and surface elasticity. Meanwhile, the influence of strut (or ligament) size on the mechanical properties of nanoporous materials is discussed, which becomes a key factor with consideration of the residual surface stress and the surface elasticity. The results show that the decrease in the strut diameter and the increase in the residual surface stress or the surface elasticity can both lead to an increase in the carrying capacity of nanoporous materials. Furthermore, mechanical behaviors of anisotropic nanoporous materials in different directions (the rise direction and the transverse direction) are investigated. The results indicate that the surface effects in the transverse direction are more obvious than those in the rise direction for anisotropic nanoporous materials. In addition, the present results can be reduced to the cases of conventional foams as the strut size increases to micron-scale, which confirms validity of the model to a certain extent.

Cite this article

Zixing LU, Fan XIE, Qiang LIU, Zhenyu YANG . Surface effects on mechanical behavior of elastic nanoporous materials under high strain[J]. Applied Mathematics and Mechanics, 2015 , 36(7) : 927 -938 . DOI: 10.1007/s10483-015-1958-9

References

[1] Wesche, M., Hüske, M., Yakushenko, A., Bruggemann, D., Mayer, D., Offenhausser, A., and Wolfrum, B. A nanoporous alumina microelectrode array for functional cell-chip coupling. Nanotechnology, 23(49), 495303 (2012)
[2] Arakcheev, V. G. and Morozov, V. B. Vibrational Spectra of Molecular Fluids in Nanopores, IOP Publishing, Bristol (2012)
[3] Yang, X., Lian, X. J., Liu, S. J., Wang, G., Jiang, C. P., Tian, J., Chen, J. W., and Wang, R. L. Enhanced photocatalytic performance: a -Bi2O3 thin film by nanoporous surface. Journal of Physics D: Applied Physics, 46(3), 35103 (2013)
[4] Meynen, V., Cool, P., and Vansant, E. F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, 125(3), 170-223 (2009)
[5] Silvestre-Albero, J., Serrano-Ruiz, J. C., Sepúlveda-Escribano, A., and Rodríguez-Reinoso, F. Zn-modified MCM-41 as support for Pt catalysts. Applied Catalysis A: General, 351(1), 16-23 (2008)
[6] Chen, X., Surani, F. B., Kong, X., Punyamurtula, V. K., and Qiao, Y. Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Applied Physics Letters, 89(24), 241918 (2006)
[7] El-Mir, L., Kraiem, S., Bengagi, M., Elaloui, E., Ouederni, A., and Alaya, S. Synthesis and characterization of electrical conducting nanoporous carbon structures. Physica B: Condensed Matter, 395(1), 104-110 (2007)
[8] Kucheyev, S. O., Hayes, J. R., Biener, J., Huser, T., Talley, C. E., and Hamza, A. V. Surfaceenhanced Raman scattering on nanoporous Au. Applied Physics Letters, 89(5), 53102 (2006)
[9] Biener, J., Wittstock, A., Zepeda-Ruiz, L. A., Biener, M. M., Zielasek, V., Kramer, D., Viswanath, R. N., Weissmüller, J., Bäumer, M., and Hamza, A. Z. Surface-chemistry-driven actuation in nanoporous gold. Nature Materials, 8(1), 47-51 (2008)
[10] Biener, J., Hodge, A. M., Hamza, A. V., Hsiung, L. M., and Satcher, J. H., Jr. Nanoporous Au: a high yield strength material. Journal of Applied Physics, 97(2), 24301 (2005)
[11] Biener, J., Hodge, A. M., Hayes, J. R., Volkert C. A., Zepeda-Ruiz, L. A., Hamza, A. V., and Abraham, F. F. Size effects on the mechanical behavior of nanoporous Au. Nano Letters, 6(10), 2379-2382 (2006)
[12] Hodge, A. M., Biener, J., Hayes, J. R., Bythrow, P. M., Volkert, C. A., and Hamza, A. V. Scaling equation for yield strength of nanoporous open-cell foams. Acta Materialia, 55(4), 1343-1349 (2007)
[13] Fan, H. L. and Fang, D. N. Enhancement of mechanical properties of hollow-strut foams: analysis. Materials and Design, 30(5), 1659-1666 (2009)
[14] Weissmüller, J., Duan, H., and Farkas, D. Deformation of solids with nanoscale pores by the action of capillary forces. Acta Materialia, 58(1), 1-13 (2010)
[15] Gurtin, M. E. and Murdoch, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291-323 (1975)
[16] Wang, J. X., Huang, Z. P., Duan, H. L., Yu, S. W., Feng, X. Q., Wang, G. F., Zhang, W. X., and Wang, T. J. Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 24(1), 52-82 (2011)
[17] Feng, X. Q., Xia, R., Li, X. D., and Li, B. Surface effects on the elastic modulus of nanoporous materials. Applied Physics Letters, 94(1), 011916 (2009)
[18] Lu, Z. X., Zhang, C. G., Liu, Q., and Yang, Z. X. Surface effects on the mechanical properties of nanoporous materials. Journal of Physics D: Applied Physics, 44(39), 395404 (2011)
[19] Xia, R., Li, X., Qin, Q., Liu, J., and Feng, X. Q. Surface effects on the mechanical properties of nanoporous materials. Nanotechnology, 22(26), 265714 (2011)
[20] Goudarzi, T., Avazmohammadi, R., and Naghdabadi, R. Surface energy effects on the yield strength of nanoporous materials containing nanoscale cylindrical voids. Mechanics of Materials, 42(9), 852-862 (2010)
[21] Moshtaghin, A. F., Naghdabadi, R., and Asghari, M. Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids. Mechanics of Materials, 51, 74-87 (2012)
[22] Chen, X., Zhang, S., Dikin, D. A., Ding, W., and Ruoff, R. S. Mechanics of a carbon nanocoil. Nano Letters, 3(9), 1299-1304 (2003)
[23] Mao, S., Han, X. D., Wu, M. H., Zhang, Z., Hao, F., Liu, D. M., Zhang, Y. F., and Hou, B. F. Effect of cyclic loading on apparent Young's modulus and critical stress in nano-subgrained superelastic NiTi shape memory alloys. Materials Transactions, 47(3), 735-741 (2006)
[24] Gao, P. X., Mai, W., and Wang, Z. L. Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Letters, 6(11), 2536-2543 (2006)
[25] Liu, J. L., Mei, Y., Xia, R., and Zhu, W. L. Large displacement of a static bending nanowire with surface effects. Physica E: Low-Dimensional Systems and Nanostructures, 44(10), 2050-2055 (2012)
[26] Wang, G. and Yang, F. Postbuckling analysis of nanowires with surface effects. Journal of Applied Physics, 109(6), 63535 (2011)
[27] Wang, J. S., Wang, G. F., Feng, X. Q., and Qin, Q. H. Surface effects on the superelasticity of nanohelices. Journal of Physics: Condensed Matter, 24(26), 265303 (2012)
[28] Dubbeldam, D., Beerdsen, E., Calero, S., and Smit, B. Dynamically corrected transition state theory calculations of self-diffusion in anisotropic nanoporous materials. The Journal of Physical Chemistry B, 110(7), 3164-3172 (2006)
[29] Lu, Z., Huang, J., and Chen, X. Analysis and simulation of high strain compression of anisotropic open-cell elastic foams. Science China Technological Sciences, 53(3), 863-869 (2010)
[30] Lu, Z., Liu, Q., and Chen, X. Analysis and simulation for the tensile behavior of anisotropic open-cell elastic foams. Applied Mathematics and Mechanics (English Edition), 35(11), 1437-1446 (2014) DOI 10.1007/s10483-014-1874-7
[31] Cammarata, R. C. Surface and interface stress effects on interfacial and nanostructured materials. Materials Science and Engineering: A, 237(2), 180-184 (1997)
[32] Gurtin, M. E., Weissmüller, J., and Larche, F. A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78(5), 1093-1109 (1998)
[33] Chen, T., Chiu, M., and Weng, C. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 100(7), 74308 (2006)
[34] He, J. and Lilley, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Letters, 8(7), 1798-1802 (2008)
[35] Wang, G. and Feng, X. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied Physics Letters, 90(23), 231904 (2007)
[36] Zhu, H. X., Mills, N. J., and Knott, J. F. Analysis of the high strain compression of open-cell foams. Journal of the Mechanics and Physics of Solids, 45(11), 1875-1904 (1997)
[37] Lu, Z., Zhang, J., and Wang, S. Investigation into elastic properties of anisotropic random foam model (in Chinese). Journal of Beijing University of Aeronautics and Astronautics, 32, 1468-1471 (2006)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals