Articles

Interaction between compressibility and particulate suspension on peristaltically driven flow in planar channel

Expand
  • 1. Department of Basic Engineering Sciences, Faculty of Engineering, Menoufia University, Menoufia 32511, Egypt;
    2. Department of Mechanical Engineering, University of California, California 92521, U. S. A.;
    3. Basic Science Department, Faculty of Engineering, The British University in Egypt, Cairo 11837, Egypt;
    4. Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza 12613, Egypt

Received date: 2016-03-22

  Revised date: 2016-08-23

  Online published: 2017-01-01

Abstract

The peristaltic pumping of a viscous compressible liquid mixed with rigid spherical particles of the same size in a channel is theoretically investigated. The momentum equations for the compressible flow are solved with a perturbation analysis. The analysis is carried out by duly accounting for the nonlinear convective acceleration terms for the fluid part on the wavy wall. The zeroth-order terms yield the Poiseuille flow, and the first-order terms give the Orr-Sommerfeld equation. The explicit expression for the net axial velocity is derived. The effects of the embedded parameters on the axial fluid velocity are studied through different engineering applications. The features of the flow characteristics are analyzed and discussed in detail. The obtained results are evaluated for various parameters associated with the blood flow in the blood vessels with diameters less than 5 500 μm, whereas the particle diameter has been taken to be 8 μm. This study provides a scope to evaluate the effect of the theory of two-phase flow characteristics with compressible fluid problems, and is helpful for understanding the role of engineering applications of pumping solid-fluid mixture by peristaltically driven motion.

Cite this article

I. M. ELDESOKY, S. I. ABDELSALAM, R. M. ABUMANDOUR, M. H. KAMEL, K. VAFAI . Interaction between compressibility and particulate suspension on peristaltically driven flow in planar channel[J]. Applied Mathematics and Mechanics, 2017 , 38(1) : 137 -154 . DOI: 10.1007/s10483-017-2156-6

References

[1] Latham, T. W. Fluid Motion in a Peristaltic Pump, M.Sc.dissertation, Massachusetts Institute of Technology, Cambridge (1966)
[2] Rath, H. J. Peristaltische Stromungen, Springer, Berlin (1980)
[3] Srivastava, L. M. and Srivastava, V. P. Peristaltic transport of blood:Casson model-II. Journal of Biomechanics, 17, 821-830(1984)
[4] Srivastava, L. M. and Srivastava, V. P. Interaction of peristaltic flow with pulsatile flow in a circular cylindrical tube. Journal of Biomechanical Engineering, 18, 247-253(1985)
[5] Srivastava, L. M. and Srivastava, V. P. Peristaltic transport of a particle-fluid suspension. Journal of Biomechanical Engineering, 111, 157-65(1989)
[6] Srivastava, L. M. and Srivastava, V. P. Effects of poiseuille flow on peristaltic transport of a particulate suspension. Zeitschrift für Angowandte Mathematik und Physik, 46, 655-679(1995)
[7] Srivastava, V. E. and Saxena, M. A. Two-fluid model of non-Newtonian blood flow induced by peristaltic waves. Rheologica Acta, 34, 406-414(1995)
[8] Hung, T. K. and Brown, T. D. Solid-particle motion in two-dimensional peristaltic flows. Journal of Fluid Mechanics, 73, 77-96(1976)
[9] Mekheimer, K. S., El-Shehawey, E. F., and Elaiw, A. M. Peristaltic motion of a particle-fluid suspension in a planar channel. International Journal of Theoretical Physics, 37, 2895-2920(1998)
[10] El-Misery, A. M., El-Shehawey, E. F., and Hakeem, A. A. Peristaltic motion of an incompressible generalized Newtonian fluid in a planar channel. Journal of Physical Society, 65, 3524-3529(1996)
[11] Aarts, A. C. T. and Ooms, G. Net Flow of compressible viscous liquids induced by traveling waves in porous media. Journal of Engineering Mathematics, 34, 435-450(1998)
[12] Antanovskii, L. K. and Ramkissoon, H. Long-wave peristaltic transport of a compressible viscous fluid in a finite pipe subject to a time dependent pressure drop. Fluid Dynamics Research, 19, 115-123(1997)
[13] Tsiklauri, D. and Beresenev, I. Non-Newtonian effects in the peristaltic flow of a Maxwell fluid. Physics Review E, 64, 0363031-0363035(2001)
[14] Castulik, P. The compressible boundary layer and the Boltzmann equation. Journal of Applied Mathematics Letters, 15, 17-23(2002)
[15] Kawashita, M. On global solutions of Cauchy problems for compressible Navier-Stokes equations. NonLinear Analysis, 48, 1087-1105(2002)
[16] Eldesoky, I. M. and Mousa, A. A. Peristaltic pumping of fluid in cylindrical tube and its applications in the field of aerospace. 13th International Conference on Aerospace Sciences and Aviation Technology, Military Technical College, Cairo, 1-14(2009)
[17] Eldesoky, I. M. Influence of slip condition on pristaltic transport of a compressible Maxwell fluid through porous medium in a tube. International Journal of Applied Mathematics and Mechanics, 8, 99-117(2012)
[18] Mekheimer, K. S. and Abdel-Wahab, A. N. Net annulus flow of a compressible viscous liquid with peristalsis. Journal of Aerospace Engineering, 25, 660-669(2012)
[19] Mekheimer, K. S., El-Komy, S. R., and Abdelsalam, S. I. Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a micro-channel. Chinese Physics B, 22, 1247021-12470210(2013)
[20] Felderhof, B. U. Dissipation in peristaltic pumping of a compressible viscous fluid through a planar duct or a circular tube. Physical Review E, 83, 0463101-0463106(2011)
[21] Elshehawey, E. F., El-Saman, E. R., El-Shahed, M., and Dagher, M. Peristaltic transport of a compressible viscous liquid through a tapered pore. Applied Mathematics and Computation, 169, 526-543(2005)
[22] Hayat, T., Ali, N., and Asghar, S. An analysis of peristaltic transport for flow of a Jeffrey fluid. Acta Mechanica, 193, 101-112(2007)
[23] El-Shehawy, E. F., El-Dabe, N. T., and Eldesoky, I. M. Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid. Acta Mechanica, 186, 141-159(2006)
[24] Fung, Y. C. and Yih, C. S. Peristaltic transport. ASME Journal of Applied Mechanics, 35, 669-675(1968)
[25] Drew, D. A. Stability of a Stokes layer of a dusty gas. Physics of Fluids, 22, 2081-2086(1979)
[26] Srivastava, L. M. and Srivastava, V. P. On two-phase model of pulsatile blood flow with entrance effects. Biorheology, 20, 761-777(1983)
[27] Anderson, J. D. Modern Compressible Flow:With Historical Perspective, McGraw Hill Higher Company, New York (1990)
[28] Batchelor, G. K. Transport properties of two-phase materials with random structure. Annual Review of Fluid Mechanics, 6, 277-255(1974)
[29] Batchelor, G. K. Diffusion of particles with hydrodynamic interaction. Journal of Fluid Mechanics, 74, 1-29(1976)
[30] Tam, C. K. W. The drag on a cloud of spherical particles in low Reynolds number flow. Journal of Fluid Mechanics, 38, 537-546(1969)
[31] Charm, S. E. and Kurland, G. S. Blood Flow and Micro-Circulation, John Wiley, New York (1974)
[32] Waller, B. F., Orr, C. M., Slack, J. D., Pinkerton, C. A., van Tassel, J., and Peters, T. Anatomy, histology, and pathology of coronary arteries:a review relevant to new interventional and imaging techniques-part I. Clinical Cardiology, 15, 451-457(1992)
[33] Lighthill, J. Waves in Fluids, Cambridge University Press, Cambridge (1978)
[34] Chung, S. and Vafai, K. Mechanobiology of low-density lipoprotein transport within an arterial wall-impact of hyperthermia and coupling effects. Journal of Biomechanics, 47, 137-147(2014)
[35] Keangin, P., Vafai, K., and Rattanadecho, P. Electromagnetic field effects on biological materials. International Journal of Heat and Mass Transfer, 65, 389-399(2013)
[36] Goodarzi, M., Safaei, M. R., Vafai, K., Ahmadi, G., Dahari, M., Kazi, S. N., and Jomhari, N. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. International Journal of Thermal Science, 75, 204-220(2014)
[37] Hayat, T., Saleem, N., Abd Elmaboud, Y., Asghar, S. Peristaltic flow of a second-order fluid in the presence of an induced magnetic field. International Journal for Numerical Methods in Fluids, 67, 537-558(2011)
[38] Mekheimer, K. S. and Abd Elmaboud, Y. Peristaltic transport of a particle-fluid suspension through a uniform and non-uniform annulus. Applied Bionics and Biomechanics, 5, 47-57(2008)
[39] Kamel, M. H., Eldesoky, I. M., Maher, B. M., and Abumandour, R. M. Slip effects on peristaltic transport of a particle-fluid suspension in a planar channel. Applied Bionics and Biomechanics, 2015, 1-14(2015)
[40] Chinjung, Y. and Eugene, C. E. Transient lateral transport of platelet-sized particles in flowing blood suspensions. Biophysical Journal, 66, 1706-1716(1994)

Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals