Articles

Transfer characteristics of dynamic biochemical signals in non-reversing pulsatile flows in a shallow Y-shaped microfluidic channel:signal filtering and nonlinear amplitude-frequency modulation

Expand
  • Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China

Received date: 2017-03-23

  Revised date: 2017-04-27

  Online published: 2017-10-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 11172060 and 11672065)

Abstract

The transports of the dynamic biochemical signals in the non-reversing pulsatile flows in the mixing microchannel of a Y-shaped microfluidic device are analyzed. The results show that the mixing micro-channel acts as a low-pass filter, and the biochemical signals are nonlinearly modulated by the pulsatile flows, which depend on the biochemical signal frequency, the flow signal frequency, and the biochemical signal transporting distance. It is concluded that, the transfer characteristics of the dynamic biochemical signals, which are transported in the time-varying flows, should be carefully considered for better loading biochemical signals on the cells cultured on the bottom of the microfluidic channel.

Cite this article

Zongzheng CHEN, Weimo YUAN, A. R. AZIZ, Zhengming GAO, Depei ZENG, Bo LIU, Kairong QIN . Transfer characteristics of dynamic biochemical signals in non-reversing pulsatile flows in a shallow Y-shaped microfluidic channel:signal filtering and nonlinear amplitude-frequency modulation[J]. Applied Mathematics and Mechanics, 2017 , 38(10) : 1481 -1496 . DOI: 10.1007/s10483-017-2251-6

References

[1] Moore, K. A. and Lemischka, I. R. Stem cells and their niches. Science, 311, 1880-1885(2006)
[2] Chien, S. Mechanotransduction and endothelial cell homeostasis:the wisdom of the cell. American Journal of Physiology, 292, H1209-H1224(2006)
[3] Malek, A. M. and Izumo, S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. Journal of Cell Science, 109, 713-726(1996)
[4] Yamamoto, K., Sokabe, T., Matsumoto, T., Yoshimura, K., Shibata, M., Ohura, N., Fukuda, T., Sato, T., Sekine, K., Ato, K. S., Isshiki, M., Fujita, T., Kobayashi, M., Kawamura, K., Masuda, H., Kamiya, A., and Ando, J. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nature Medicine, 12, 133-137(2006)
[5] Roy, B., Das, T., Mishra, D., Maiti, T. K., and Chakraborty, S. Oscillatory shear stress induced calcium flickers in osteoblast cells. Integrative Biology, 6, 289-299(2014)
[6] Zheng, W. F., Xie, Y. Y., Zhang, W., Wang, D., Ma, W. S., Wang, Z., and Jiang, X. Y. Fluid flow stress induced contraction and re-spread of mesenchymal stem cells:a microfluidic study. Integrative Biology, 4, 1102-1111(2012)
[7] Zhang, X. L., Yin, H. B., Cooper, J. M., and Haswell, S. J. Characterization of cellular chemical dynamics using combined microfluidic and raman techniques. Analytical and Bioanalytical Chemistry, 390, 833-840(2008)
[8] Kuczenski, B., Ruder, W. C., Messner, W. C., and LeDuc, P. R. Probing cellular dynamics with a chemical signal generator. PLoS One, 4, e4847(2009)
[9] Kim, Y. T., Joshi, S. D., Messner, W. C., Leduc, P. R., and Davidson, L. A. Detection of dynamic spatiotemporal response to periodic chemical stimulation in a Xenopus embryonic tissue. PLoS One, 6, e14624(2011)
[10] Shin, H., Mahto, S. K., Kim, J. H., and Rhee, S. W. Exposure of BALB/3T3 fibroblast cells to temporal concentration profile of toxicant inside microfluidic device. BioChip Journal, 5, 214-219(2011)
[11] Qin, K. R., Xiang C., and Cao, L. L. Dynamic modeling for flow-activated chloride-selective membrane current in vascular endothelial cells. Biomech Model Mechanobiol, 10, 743-754(2011)
[12] Li, L. F., Xiang, C., and Qin, K. R. Modeling of TRPV4-C1-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP. Biomech Model Mechanobiol, 15, 979-993(2015)
[13] Martin, R. S., Root, P. D., and Spence, D. M. Microfluidic technologies as platforms for performing quantitative cellular analyses in an in vitro environment., 131, 1197-1206(2006)
[14] Ziolkowska, K., Kwapiszewski, R., and Brzozka, Z. Microfluidic devices as tools for mimicking the in vivo environment. New Journal of Chemistry, 35, 979-990(2011)
[15] Breslauer, D. N., Lee, P. J., and Lee, L. P. Microfluidics-based systems biology. Molecular BioSystems, 2, 97-112(2006)
[16] Chen, L., Azizi, F., and Mastrangelo, C. H. Generation of dynamic chemical signals with microfluidic C-DACs. Lab Chip, 7, 850-855(2007)
[17] Azizi, F. and Mastrangelo, C. H. Generation of dynamic chemical signals with pulse code modulators. Lab Chip, 8, 907-912(2008)
[18] Xie, Y., Wang, Y., and Mastrangelo, C. H. Fourier microfluidics. Lab Chip, 8, 779-785(2008)
[19] Kuczenski, B., LeDuc, P. R., and Messner, W. C. Pressure-driven spatiotemporal control of the laminar flow interface in a microfluidic network. Lab Chip, 7, 647-649(2007)
[20] Yamada, A., Katanosaka, Y., Mohri, S., and Naruse, K. A rapid microfluidic switching system for analysis at the single cellular level. IEEE Transactions on Nanobioscience, 8, 306-311(2009)
[21] Li, Y. J., Li, Y. Z., Cao, T., and Qin, K. R. Transport of dynamic biochemical signals in steady flow in a shallow Y-shaped microfluidic channel:effect of transverse diffusion and longitudinal dispersion. Journal of Biomechanical Engineering-Transactions of the ASME, 135, 121011-121019(2013)
[22] Brabant, G., Prank, K., and Schofl, C. Pulsatile pattern in hormone secretion. Trends in Endocrinology & Metabolism, 3, 183-190(1992)
[23] Roy, P. K. and Shahiwala, A. Multiparticulate formulation approach to pulsatile drug delivery:current perspectives. Journal of Controlled Release, 134, 74-80(2009)
[24] Chen, Z. Z., Gao, Z. M., Zeng, D. P., Liu, B., Luan, Y., and Qin, K. R. A Y-shaped microfluidic device to study the combined effect of wall shear stress and ATP signals on intracellular calcium dynamics in vascular endothelial cells. Micromachines, 7, 213(2016)
[25] Lam, Y. C., Chen, X., and Yang, C. Depthwise averaging approach to cross-stream mixing in a pressure-driven micro-channel flow. Microfluid and Nanofluid, 1, 218-226(2005)
[26] Courant, R., Friedrichs, K. O., and Lewy, H. On the partial difference equations of mathematical physics. IBM Journal of Research and Development, 11, 215-234(1967)
[27] Ashall, L., Horton, C. A., Nelson, D. E., Paszek, P., Harper, C. V., Sillitoe, K., Ryan, S., Spiller, D. G., Unitt, J., Broomhead, D. S., Kell, D. B., Rand, D. A., See, V., and White, M. R. Pulsatile stimulation determines timing and specificity of NF-kappa B-dependent transcription. Science, 324, 242-246(2009)
[28] Dolmetsch, R. E., Xu, K. L., and Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. nature, 392, 933-936(1998)
[29] Liu, T. S., Gong, J. B., Chen, Y. T., and Jiang, S. S. Periodic vs constant high glucose in inducing pro-inflammatory cytokine expression in human coronary artery endothelial cells. Inflammation Research, 62, 697-701(2013)

Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals