Articles

Atomic-scale simulations for lithium dendrite growth driven by strain gradient

Expand
  • 1. State Key Laboratory for Turbulence and Complex Systems & Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, China;
    2. Department of Engineering Mechanics, Shandong University, Jinan 250100, China;
    3. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    4. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China

Received date: 2020-01-06

  Revised date: 2020-01-20

  Online published: 2020-03-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 11572040 and 11521202) and the National Key Research and Development Program of China (No. 2016YFB0700600)

Abstract

Dendrite formation is a major obstacle, e.g., capacity loss and short circuit, to the next-generation high-energy-density lithium (Li)-metal batteries. The development of successful Li dendrite mitigation strategies is impeded by an insufficient understanding in Li dendrite growth mechanisms. The Li-plating-induced internal stress in Li-metal and its effects on dendrite growth have been widely studied, but the underlying microcosmic mechanism is elusive. In the present study, the role of the plating-induced stress in dendrite formation is analyzed through first-principles calculations and ab initio molecular dynamic (AIMD) simulations. It is shown that the deposited Li forms a stable atomic nanofilm structure on the copper (Cu) substrate, and the adsorption energy of Li atoms increases from the Li-Cu interface to the deposited Li surface, leading to more aggregated Li atoms at the interface. Compared with the pristine Li-metal, the deposited Li in the early stage becomes compacted and suffers the in-plane compressive stress. Interestingly, there is a giant strain gradient distribution from the Li-Cu interface to the deposited Li surface, making the deposited atoms adjacent to the Cu surface tend to press upwards with perturbation and causing the dendrite growth. This provides an insight into the atomicscale origin of Li dendrite growth, and may be useful for suppressing the Li dendrite in Li-metal-based rechargeable batteries.

Cite this article

Gao XU, Feng HAO, Jiawang HONG, Daining FANG . Atomic-scale simulations for lithium dendrite growth driven by strain gradient[J]. Applied Mathematics and Mechanics, 2020 , 41(4) : 533 -542 . DOI: 10.1007/s10483-020-2596-5

References

[1] XU, W., WANG, J., DING, F., CHEN, X., NASYBULIN, E., ZHANG, Y., and ZHANG, J. G. Lithium metal anodes for rechargeable batteries. Energy and Environmental Science, 7, 513-537(2014)
[2] TARASCON, J. M. and ARMAND, M. Issues and challenges facing rechargeable lithium batteries. nature, 414, 359-367(2001)
[3] CHU, S. and MAJUMDAR, A. Opportunities and challenges for a sustainable energy future. nature, 488, 294-303(2012)
[4] LIU, B., ZHANG, J. G., and XU, W. Advancing lithium metal batteries. Joule, 2, 833-845(2018)
[5] ALBERTUS, P., BABINEC, S., LITZELMAN, S., and NEWMAN, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy, 3, 16-21(2018)
[6] ZHANG, X., WANG, A., LIU, X., and LUO, J. Dendrites in lithium metal anodes:suppression, regulation, and elimination. Accounts of Chemical Research, 52, 3223-3232(2019)
[7] LIN, D., LIU, Y., and CUI, Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12, 194-206(2017)
[8] WANG, X., ZENG, W., HONG, L., XU, W., YANG, H., WANG, F., DUAN, H., TANG, M., and JIANG, H. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nature Energy, 3, 227-235(2018)
[9] GUO, Y., LI, H., and ZHAI, T. Reviving lithium-metal anodes for next-generation high-energy batteries. Advanced Materials, 29, 1700007(2017)
[10] LIN, D., LIU, Y., and CUI, Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12, 194-206(2017)
[11] AURBACH, D., MARKOVSKY, B., SHECHTER, A., EIN-ELI, Y., and COHEN, H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. Journal of the Electrochemical Society, 143, 3809-3820(1996)
[12] AURBACH, D., ZABAN, A., GOFER, Y., EIN-ELI, Y., WEISSMAN, I., CHUSID, O., and ABRAMSON, O. Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. Journal of Power Sources, 54, 76-84(1995)
[13] MURUGAN, R., THANGADURAI, V., and WEPPNER, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 46, 7778-7781(2007)
[14] KIM, K. H., IRIYAMA, Y., YAMAMOTO, K., KUMAZAKI, S., ASAKA, T., TANABE, K., FISHER, C. A. J., HIRAYAMA, T., MURUGAN, R., and OGUMI, Z. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. Journal of Power Sources, 196, 764-767(2011)
[15] GIREAUD, L., GRUGEON, S., LARUELLE, S., YRIEIX, B., and TARASCON, J. M. Lithium metal stripping/plating mechanisms studies:a metallurgical approach. Electrochemistry Communications, 8, 1639-1649(2006)
[16] MAYERS, M. Z., KAMINSKI, J. W., and MILLER, T. F. III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. Journal of Physical Chemistry C, 116, 26214-26221(2012)
[17] LEE, H., LEE, D. J., KIM, Y. J., PARK, J. K., and KIM, H. T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources, 284, 103-108(2015)
[18] TIKEKAR, M. D., CHOUDHURY, S., TU, Z., and ARCHER, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 1, 16114(2016)
[19] YANG, C. P., YIN, Y. X., ZHANG, S. F., LI, N. W., and GUO, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 6, 8058(2015)
[20] LU, L. L., GE, J., YANG, J. N., CHEN, S. M., YAO, H. B., ZHOU, F., and YU, S. H. Freestanding copper nanowire network current collector for improving lithium anode performance. Nano Letters, 16, 4431-4437(2016)
[21] YAN, K., LU, Z., LEE, H. W., XIONG, F., HSU, P. C., LI, Y., ZHAO, J., CHU, S., and CUI, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 1, 16010(2016)
[22] YUN, Q., HE, Y. B., LV, W., ZHAO, Y., LI, B., KANG, F., and YANG, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 28, 6932-6939(2016)
[23] HE, Y., REN, X., XU, Y., ENGELHARD, M. H., LI, X., XIAO, J., LIU, J., ZHANG, J. G., XU, W., and WANG, C. Origin of lithium whisker formation and growth under stress. Nature Nanotechnology, 14, 1042-1047(2019)
[24] MONROE, C. and NEWMAN, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 152, A396-A404(2005)
[25] AHMAD, Z. and VISWANATHAN, V. Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Physical Review Letters, 119, 056003(2017)
[26] CHASON, E., JADHAV, N., PEI, F., BUCHOVECKY, E., and BOWER, A. Growth of whiskers from Sn surfaces:driving forces and growth mechanisms. Progress in Surface Science, 88, 103-131(2013)
[27] CHASON, E., ENGWALL, A., PEI, F., LAFOURESSE, M., BERTOCCI, U., STAFFORD, G., MURPHY, J. A., LENIHAN, C., and BUCKLEY, D. N. Understanding residual stress in electrodeposited Cu thin films. Journal of the Electrochemical Society, 160, D3285-D3289(2013)
[28] SHIN, J. W. and CHASON, E. Compressive stress generation in Sn thin films and the role of grain boundary diffusion. Physical Review Letters, 103, 056102(2009)
[29] YAMAKI, J., TOBISHIMA, S., HAYASHI, K., SAITO, K., NEMOTO, Y., and ARAKAWA, M. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 74, 219-227(1998)
[30] ABERMANN, R. and KOCH, R. The internal-stress in thin silver, copper and gold-films. Thin Solid Films, 129, 71-78(1985)
[31] SPAEPEN, F. Interfaces and stresses in thin films. Acta Materials, 48, 31-42(2000)
[32] CHASON, E., SHELDON, B. W., FREUND, L. B., FLORO, J. A., and HEARNE, S. J. Origin of compressive residual stress in polycrystalline thin films. Physical Review Letters, 88, 156103(2002)
[33] KRESSE, G. and FURTHMÜLLER, J. Efficient iterative schemes for ab initio total-energy cal-culations using a plane-wave basis set. Physical Review B, 54, 11169-11186(1996)
[34] KRESSE, G. and FURTHMÜLLER, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15-50(1996)
[35] BLÖCHL, P. E. Projector augmented-wave method. Physical Review B, 50, 17953-17979(1994)
[36] PERDEW, J. P., CHEVARY, J. A., VOSKO, S. H., JACKSON, K. A., PEDERSON, M. R., SINGH, D. J., and FIOLHAIS, C. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 6671-6687(1992)
[37] NOSÉ, S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81, 511-519(1984)
[38] COVINGTON, E. J. and MONTGOMERY, D. J. Lattice constants of separated lithium isotopes. The Journal of Chemical Physics, 27, 1030-1032(1957)
[39] DAVEY, W. P. Precision measurements of the lattice constants of twelve common metals. Physical Review, 25, 753(1925)
[40] LU, Z., LV, P., YANG, Z., LI, S., MA, D., and WU, R. A promising single atom catalyst for CO oxidation:Ag on boron vacancies of h-BN sheets. Physical Chemistry Chemical Physics, 19, 16795-16805(2017)
[41] TANG, Y. L., ZHU, Y. L., MA, X. L., BORISEVICH, A. Y., MOROZOVSKA, A. N., ELISEEV, E. A., WANG, W. Y., WANG, Y. J., XU, Y. B., ZHANG, Z. D., and PENNYCOOK, S. J. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science, 348, 547-551(2015)
[42] GAO, P., YANG, S., ISHIKAWA, R., LI, N., FENG, B., KUMAMOTO, A., SHIBATA, N., YU, P., and IKUHARA, Y. Atomic-scale measurement of flexoelectric polarization at SrTiO3 dislocations. Physical Review Letters, 120, 267601(2018)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals