[1] CATTANEO, C. Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 3, 83-101(1948)
[2] CHRISTOV, C. I. On a higher-gradient generalization of Fourier's law of heat conduction. AIP Conference Proceedings, 946, 11-22(2007)
[3] DOGONCHI, A. S., WAQAS, M., GULZAR, M. M., TILEHNOEE, M. H., SEYYEDI, S. M., and GANJI, D. D. Simulation of Fe3O4-H2O nanoliquid in a triangular enclosure subjected to Cattaneo-Christov theory of heat conduction. International Journal of Numerical Methods for Heat and Fluid Flow, 29(11), 4430-4444(2019)
[4] IJAZ, M. and AYUB, M. Activation energy and dual stratification effects for Walter-B fluid flow in view of Cattaneo-Christov double diffusionon. Heliyon, 5(6), e01815(2019)
[5] CHOI, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exhibition, 66, 99-105(1995)
[6] IBRAHIM, W., SHANKAR, B., and NANDEPPANAVAR, M. M. MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. International Journal of Heat and Mass Transfer, 56, 1-9(2013)
[7] SANDEEP, N., KUMAR, B. R., and KUMAR, M. S. J. A comparative study of convective heat and mass transfer in non-Newtonian nanofluid flow past a permeable stretching sheet. Journal of Molecular Liquids, 212, 585-591(2015)
[8] HAYAT, T., IMTIAZ, M., and ALSAEDI, A. Unsteady flow of nanofluid with double stratification and magnetohydrodynamics. International Journal of Heat and Mass Transfer, 92, 100-109(2016)
[9] SHEIKHOLESLAMI, M., HAYAT, T., and ALSAEDI, A. MHD free convection of Al2O3-water nanofluid considering thermal radiation:a numerical study. International Journal of Heat and Mass Transfer, 96, 513-524(2016)
[10] CAO, L., SI, X., and ZHENG, L. Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles:Lie group analysis. Applied Mathematics and Mechanics (English Edition), 37(4), 433-442(2016) https://doi.org/10.1007/s10483-016-2052-9
[11] HAYAT, T., NAZAR, H., IMTIAZ, M., and ALSAEDI, A. Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks. Applied Mathematics and Mechanics (English Edition), 38(12), 1663-1678(2017) https://doi.org/10.1007/s10483-017-2289-8
[12] HAYAT, T., MUHAMMAD, T., MUSTAFA, M., and ALSAEDI, A. An optimal study for threedimensional flow of Maxwell nanofluid subject to rotating frame. Journal of Molecular Liquids, 229, 541-547(2017)
[13] SHEREMET, M. A., TRÎMBIŢAŞ, R., GROŞAN, T., and POP, I. Natural convection of an alumina-water nanofluid inside an inclined wavy-walled cavity with a non-uniform heating using Tiwari and Das'nanofluid model. Applied Mathematics and Mechanics (English Edition), 39(10), 1425-1436(2018) https://doi.org/10.1007/s10483-018-2377-7
[14] AHMED, T. N. and KHAN, I. Mixed convection flow of sodium alginate (SA-NaAlg) based molybdenum disulphide (MoS2) nanofluids:Maxwell Garnetts and Brinkman models. Results in Physics, 8, 752-757(2018)
[15] DOGONCHI, A. S., WAQAS, M., SEYYEDI, S. M., TILEHNOEE, M. H., and GANJI, D. D. CVFEM analysis for Fe3O4-H2O nanofluid in an annulus subject to thermal radiation. International Journal of Heat and Mass Transfer, 132, 473-483(2019)
[16] SAIF, R. S., HAYAT, T., ELLAHI, R., MUHAMMAD, T., and ALSAEDI, A. Darcy-Forchheimer flow of nanofluid due to a curved stretching surface. International Journal of Numerical Methods for Heat and Fluid Flow, 29(1), 2-20(2019)
[17] AHMED, Z., NADEEM, S., SALEEM, S., and ELLAHI, R. Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. International Journal of Numerical Methods for Heat and Fluid Flow, 29(12), 4607-4623(2019)
[18] SEYYEDI, S. M., DOGONCHI, A. S., TILEHNOEE, M. H., WAQAS, M., and GANJI, D. D. Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions. International Communications in Heat and Mass Transfer, 110, 104398(2020)
[19] SARAFRAZ, M. M., POURMEHRAN, O., YANG, B., ARJOMANDI, M., and ELLAHI, R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. International Journal of Thermal Sciences, 147, 106131(2020)
[20] RAJU, C. S. K., SANDEEP, N., and MALVANDIB, A. Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat source/sink. Journal of Molecular Liquids, 221, 108-115(2016)
[21] AHMED, J., KHAN, M., and AHMAD, L. Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. Journal of Molecular Liquids, 287, 110853(2019)
[22] MOSHKIN, N. P., PUKHNACHEV, V. V., and BOZHKOV, Y. D. On the unsteady, stagnation point flow of a Maxwell fluid in 2D. International Journal of Non-Linear Mechanics, 116, 32-38(2019)
[23] KHAN, M., MALIK, M. Y., SALAHUDDIN, T., SALEEM, S., and HUSSAIN, A. Change in viscosity of Maxwell fluid flow due to thermal and solutal stratifications. Journal of Molecular Liquids, 288, 110970(2019)
[24] FUSI, L. and FARINA, A. A mathematical model for an upper convected Maxwell fluid with an elastic core:study of a limiting case. International Journal of Engineering Science, 48(11), 1263-1278(2010)
[25] RAJAGOPAL, K. R. A note on novel generalizations of the Maxwell fluid model. International Journal of Non-Linear Mechanics, 47(1), 72-76(2012)
[26] KHAN, M., AHMED, J., and AHMAD, L. Chemically reactive and radiative von Karman swirling flow due to a rotating disk. Applied Mathematics and Mechanics (English Edition), 39(9), 1295-1310(2018) https://doi.org/10.1007/s10483-018-2368-9
[27] FAROOQ, M., AHMAD, S., JAVED, M., and ANJUM, A. Analysis of Cattaneo-Christov heat and mass fluxes in the squeezed flow embedded in porous medium with variable mass diffusivity. Results in Physics, 7, 3788-3796(2017)
[28] WAQAS, M., HAYAT, T., SHEHZAD, S. A., and ALSAEDI, A. A. Analysis of forced convective modified Burgers liquid flow considering Cattaneo-Christov double diffusion. Results in Physics, 8, 908-913(2018)
[29] ABEL, M. S., TAWADE, J. V., and NANDEPPANAVAR, M. M. MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica, 47, 385-393(2012)
[30] MEGAHED, A. M. Variable fluid properties and variable heat flux effects on the flow and heat transfer in non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chinese Physics B, 22(9), 094701(2013)
[31] WAQAS, M., KHAN, M. I., HAYAT, T., and ALSAEDI, A. Stratified flow of an Oldroyd-B nanofluid with heat generation. Results in Physics, 7, 2489-2496(2017)
[32] SHARDIAN, S., MAHMOOD, T., and POP, I. Similarity solutions for the unsteady boundary layer flow and heat transfer due to stretching sheet. International Journal of Applied Mechanics and Engineering, 11, 647-654(2006)
[33] CHAMKHA, A. J., ALY, A. M., and MANSOUR, M. A. Similarity solution for unsteady heat and mass transfer from stretching surface embedded in a porous medium with suction/injection and chemical reaction effects. Chemical Engineering Communications, 197, 846-858(2010)
[34] IRFAN, M., KHAN, M., and KHAN, W. A. Numerical analysis of unsteady 3D flow of Carreau nanofluid with variable thermal conductivity and heat source/sink. Results in Physics, 7, 3315-3324(2017)