Articles

Elastic interaction between inclusions and tunable periodicity of superlattice structure in nanowires

Expand
  • CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

Received date: 2020-03-19

  Revised date: 2020-06-19

  Online published: 2020-10-09

Supported by

Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB22040502), the National Natural Science Foundation of China (No. 11672285), and the Fundamental Research Funds for the Central Universities of China (No. WK2090050043)

Abstract

The elastic stress distribution and the variation of the elastic energy with spacing between two inclusions of arbitrary sizes in an infinite isotropic cylindrical rod are obtained by an analytical approach and the phase field microelasticity (PFM) simulation. The results show a near-attraction and far-repulsion elastic interaction between two inclusions with hydrostatic dilatation. The critical spacing, at which the interaction changes from attraction to repulsion, is on the order of the radius of the rod, dependent on the length and Poisson's ratio of inclusions. Furthermore, the elastic energy calculations and PFM simulation results indicate that applying the local radial stress on the rod surface can modulate the elastic interaction between inclusions and adjust the periodicity of the superlattice nanowire structure. This can provide some guidelines for the tunable construction of superlattice nanowire structures.

Cite this article

Yang YANG, Yong NI . Elastic interaction between inclusions and tunable periodicity of superlattice structure in nanowires[J]. Applied Mathematics and Mechanics, 2020 , 41(10) : 1461 -1478 . DOI: 10.1007/s10483-020-2654-6

References

[1] ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London, Series A, 241, 376-396(1957)
[2] ESHELBY, J. D. The elastic interaction of point defects. Acta Metallurgica, 3, 487-490(1955)
[3] BIMBERG, D., GRUNDMANN, M., LEDENTSOV, N. N., RUVIMOV, S. S., WEMER, P., RICHTER, U., HEYDENREICH, J., USTINOV, V. M., KOPEV, P. S., and ALFEROV, Z. I. Self-organization processes in MBE-grown quantum dot structures. Thin Solid Films, 267, 32-36(1995)
[4] CLUZEAU, P., POULIN, P., JOLY, G., and NGUYEN, H. T. Interactions between colloidal inclusions in two-dimensional smectic-C* films. Physical Review E, 63, 031702(2001)
[5] MUSEVIC, I., SKARABOT, M., TKALEC, U., RAVNIK, M., and ZUMER, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science, 313, 954-958(2006)
[6] MURA, T. Micromechanics of Defects in Solids, Martinus Nijhoff, Hague, Netherlands (1987)
[7] LAU, K. H. and KOHN, W. Elastic interaction of two atoms adsorbed on a solid surface. Surface Science, 65, 607-618(1977)
[8] ZHONG, Z. and MEGUID, S. A. On the elastic field of a shpherical inhomogeneity with an imperfectly bonded interface. Journal of Elasticity, 46, 91-113(1997)
[9] KUKTA, R. V., LIU, P., and KOURIS, D. On the dependence of adatom interactions on strain. Journal of the Mechanics and Physics of Solids, 51, 2149-2167(2003)
[10] HE, L. H. Elastic interaction between force dipoles on a stretchable substrate. Journal of the Mechanics and Physics of Solids, 56, 2957-2971(2008)
[11] DUAN, H. L., WANG, J., and KARIHALOO, B. L. Theory of elasticity at the nanoscale. Advances in Applied Mechanics, 42, 1-68(2009)
[12] TAO, F. M., ZHANG, M. H., and TANG, R. J. The interaction problem between the elastic line inclusions. Applied Mathematics and Mechanics (English Edition), 42(4), 847-852(2002) https://doi.org/10.1007/BF02436205
[13] KUSHCH, V. I., SHMEGERA, S. V., and BURYACHENKO, V. A. Interacting elliptic inclusions by the method of complex potentials. International Journal of Solids and Structures, 42, 5491-5512(2005)
[14] NODA, N. A. and MATSUO, T. Singular integral equation method for interaction between elliptical inclusions. ASME Journal of Applied Mechanics, 65, 310-319(1998)
[15] MOSCHOVIDIS, Z. A. and MURA, T. 2-ellipsoidal inhomogeneities by equivalent inclusion method. ASME Journal of Applied Mechanics, 42, 847-852(1975)
[16] TANG, R. J., TAO, F. M., and ZHANG, M. H. Interaction between a rigid line inclusion and an elastic circular inclusion. Applied Mathematics and Mechanics (English Edition), 18(5), 441-448(1997) https://doi.org/10.1007/BF02453739
[17] QIAO, L., HE, L. H., and DING, K. W. Axisymmetric buckling of an elastic plate containing a circular inclusion with dilative eigenstrain. ASME Journal of Applied Mechanics, 78, 014503(2011)
[18] QIAO, L., HE, L. H., and NI, Y. Local-buckling-induced elastic interaction between inclusions in a free-standing film. International Journal of Solids and Structures, 50, 3742-3747(2013)
[19] LEE, J. K. and JOHNSON, W. C. Calculation of elastic strain field of a cuboidal precipitate in an anisotropic matrix. Physica Status Solidi, 46, 267-272(1978)
[20] JOHNSON, W. C. and LEE, J. K. Elastic interaction energy of two spherical precipitates in an anisotropic matrix. Metallurgical Transactions A, 10, 1141-1149(1979)
[21] KHACHATURYAN, A. G. Theory of Structural Transformations in Solids, Wiley, New York (1983)
[22] ARDELL, A. J., NICHOLSO, R. B., and ESHELBY, J. D. On modulated structure of aged Ni-Al alloys. Acta Metallurgica, 14, 1295-1309(1966)
[23] LEE, J. K. and JOHNSON, W. C. Elastic strain-energy and interactions of thin square plates which have undergone a simple shear. Scripta Metallurgica, 11, 477-484(1977)
[24] LEO, P. H., SHIELD, T. W., and BRUNO, O. P. Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metallurgica et Materialia, 41, 2477-2485(1993)
[25] LIN, P. H., TOBUSHI, H., TANAKA, K., HATTORI, T., and MAKITA, M. Pseudoelastic behaviour of TiNi shape memory alloy subjected to strain variations. Journal of Intelligent Material Systems and Structures, 5, 694-701(1994)
[26] ZHONG, Z., SUN, Q. P., and TONG, P. On the elastic axisymmetric deformation of a rod containing a single cylindrical inclusion. International Journal of Solids and Structures, 37, 5943-5955(2000)
[27] ZHONG, Z. and SUN, Q. P. Analysis of a transversely isotropic rod containing a single cylindrical inclusion with axisymmetric eigenstrains. International Journal of Solids and Structures, 39, 5753-5765(2002)
[28] ZHONG, Z., SUN, Q. P., and YU, X. B. Elastic solutions of a cylindrical rod containing periodically distributed inclusions with axisymmetric eigenstrains. Acta Mechanica, 166, 169-183(2003)
[29] ROBINSON, R. D., SADTLER, B., DEMCHENKO, D. O., ERDONMEZ, C. K., WANG, L. W., and ALIVISATOS, A. P. Spontaneous superlattice formation in nanorods through partial cation exchange. Science, 317, 355-358(2007)
[30] ZHANG, B., JUNG, Y., CHUNG, H. S., VAN VUGT, L., and AGARWAL, R. Nanowire transformation by size-dependent cation exchange reactions. Nano Letters, 10, 149-155(2010)
[31] HUANG, C. W., CHEN, J. Y., CHIU, C. H., and WU, W. W. Revealing controllable nanowire transformation through cationic exchange for RRAM application. Nano Letters, 14, 2759-2763(2014)
[32] FENTON, J. L., STEIMLE, B. C., and SCHAAK, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science, 360, 513-517(2018)
[33] STEIMLE, B. C., FENTON, J. L., and SCHAAK, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science, 367, 418-424(2020)
[34] LIN, Y. M. and DRESSELHAUS, M. S. Thermoelectric properties of superlattice nanowires. Physical Review B, 68, 075304(2003)
[35] HU, M. and POULIKAKOS, D. Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Letters, 12, 5487-5494(2012)
[36] DEMCHENKO, D. O., ROBINSON, R. D., SADTLER, B., ERDONMEZ, C. K., ALIVISATOS, A. P., and WANG, L. W. Formation mechanism and properties of CdS-Ag2S nanorod superlattices. ACS Nano, 2, 627-636(2008)
[37] CAHN, J. W. and HILLIARD, J. E. Free energy of a nonuniform system, I:interfacial free energy. The Journal of Chemical Physics, 28, 258-267(1958)
[38] BOYNE, A., DREGIA, S. A., and WANG, Y. Concurrent spinodal decomposition and surface roughening in thin solid films. Applied Physics Letters, 99, 063111(2011)
[39] LU, Y. Y. and NI, Y. Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mechanics of Materials, 91, 372-381(2015)
[40] WANG, Y. U., JIN, Y. M., and KHACHATURYAN, A. G. Phase field microelasticity theory and modeling of elastically and structurally inhomogeneous solid. Journal of Applied Physics, 92, 1351-1360(2002)
[41] CHANG, L. G., LU, Y. Y., HE, L. H., and NI, Y. Phase field model for two-phase lithiation in an arbitrarily shaped elastoplastic electrode particle under galvanostatic and potentiostatic operations. International Journal of Solids and Structures, 143, 73-83(2018)
[42] CUI, Z. W., GAO, F., CUI, Z. H., and QU, J. M. A. second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys. Journal of Power Sources, 207, 150-159(2012a)
[43] ZHANG, X. C., SHYY, W., and MARIE SASTRY, A. Numerical simulation of intercalationinduced stress in Li-ion battery electrode particles. Journal of The Electrochemical Society, 154, A910-A916(2007)
[44] CUI, Z. W., GAO, F., and QU, J. M. A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. Journal of the Mechanics and Physics of Solids, 60, 1280-1295(2012)
[45] YANG, W. Z., LIU, Q. C., YUE, Z. F., LI, X. D., and XU, B. X. Rotation of hard particles in a soft matrix. Journal of the Mechanics and Physics of Solids, 101, 285-310(2017)
[46] WU, Y. Y., FAN, R., and YANG, P. D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Letters, 2, 83-86(2002)
[47] NICEWARNER-PENA, S. R., FREEMAN, R. G., REISS, B. D., HE, L., PENA, D. J., WALTON, I. D., CROMER, R., KEATING, C. D., and NATAN, M. J. Submicrometer metallic barcodes. Science, 294, 137-141(2001)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals