Articles

Sliding mode synchronization between uncertain Watts-Strogatz small-world spatiotemporal networks

Expand
  • 1. Shanghai Engineering Research Center of Physical Vapor Deposition Superhard Coating and Equipment, Shanghai Institute of Technology, Shanghai 201418, China;
    2. Department of Dynamics and Control, Beihang University, Beijing 100191, China;
    3. Department of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhhot 010070, China

Received date: 2020-06-29

  Revised date: 2020-08-12

  Online published: 2020-11-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 11602146, 11872304, and 11962019), the Science Foundation of Shanghai (No. 18ZR1438200), and the Chen Guang Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 16CG65)

Abstract

Based on the topological characteristics of small-world networks, a nonlinear sliding mode controller is designed to minimize the effects of internal parameter uncertainties. To qualify the effects of uncertain parameters in the response networks, some effective recognition rates are designed so as to achieve a steady value in the extremely fast simulation time period. Meanwhile, the Fisher-Kolmogorov and Burgers spatiotemporal chaotic systems are selected as the network nodes for constructing a drive and a response network, respectively. The simulation results confirm that the developed sliding mode could realize the effective synchronization problem between the spatiotemporal networks, and the outer synchronization is still achieved timely even when the connection probability of the small-world networks changes.

Cite this article

Shuang LIU, Runze ZHANG, Qingyun WANG, Xiaoyan HE . Sliding mode synchronization between uncertain Watts-Strogatz small-world spatiotemporal networks[J]. Applied Mathematics and Mechanics, 2020 , 41(12) : 1833 -1846 . DOI: 10.1007/s10483-020-2686-6

References

[1] PECORA, L. M. and CARROLL, T. L. Synchronization in chaotic systems. Physical Review Letters, 64, 821-824(1990)
[2] ALBERT, R. and BARABASI, A. L. Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47-97(2001)
[3] BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M., and HWANG, D. U. Complex networks:structure and dynamics. Physics Reports, 424, 175-308(2006)
[4] TANG, L. J., LI, D., and WANG, H. X. Lag synchronization for fuzzy chaotic system based on fuzzy observer. Applied Mathematics and Mechanics (English Edition), 30(6), 803-810(2009) https://doi.org/10.1007/s10483-009-0615-y
[5] MAO, X. C. and WANG, Z. H. Stability, bifurcation, and synchronization of delay-coupled ring neural networks. Nonlinear Dynamics, 84, 1063-1078(2016)
[6] REN, H. R., XIONG, J. L., LU, R. Q., and WU, Y. Q. Synchronization analysis of network systems applying sampled-data controller with time-delay via the Bessel-Legendre inequality. Neurocomputing, 331, 346-355(2019)
[7] LI, C. P., XU, C. X., SUN, W. G., XU, J., and KURTHS, J. Outer synchronization of coupled discrete-time networks. Chaos:An Interdisciplinary Journal of Nonlinear Science, 19, 013106(2009)
[8] LAN, J. C., ZHANG, Q. L., WEI, S., PENG, Z. K., DONG, X. J., and ZHANG W. M. Uncertainty quantification for stochastic dynamical systems using time-dependent stochastic bases. Applied Mathematics and Mechanics (English Edition), 40(1), 63-84(2019) https://doi.org/10.1007/s10483-019-2409-6
[9] WATTS, D. J. and STROGATZ, S. H. Collective dynamics of small world networks. nature, 393, 440-442(1998)
[10] NEWMAN, M. E. J. and WATTS, D. J. Renormalization group analysis of the small-world network model. Physics Letters A, 263, 341-346(1999)
[11] WANG, X. F. and CHEN, G. R. Synchronization in small-world dynamical networks. International Journal of Bifurcation and Chaos, 12, 187-192(2002)
[12] BARAHONA, M. and PECORA, L. M. Synchronization in small-world systems. Physical Review Letters, 89, 054101(2002)
[13] BELYKH, I. V., BELYKH, V. N., and HASLER, M. Blinking model and synchronization in smallworld networks with a time-varying coupling. Physica D:Nonlinear Phenomena, 195, 188-206(2004)
[14] LI, C. P., SUN, W. G., and KURTHS, J. Synchronization between two coupled complex networks. Physical Review E, 76, 046204(2007)
[15] LIU, S. and WANG, Q. Y. Outer synchronization of small-world networks by a second-order sliding mode controller. Nonlinear Dynamics, 89, 1817-1826(2017)
[16] ZHANG, H. H. and XIAO, P. C. Seizure dynamics of coupled oscillators with Epileptor field model. International Journal of Bifurcation and Chaos, 28, 1850041(2018)
[17] ZHANG, C., WANG, X. Y., LUO, C., LI, J. Q., and WANG, C. P. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Physica A:Statistical Mechanics and Its Applications, 494, 251-264(2018)
[18] LI, C. P., XU, C. X., SUN, W. G., and KURTHS, J. Outer synchronization of coupled discrete-time networks. Chaos:An Interdisciplinary Journal of Nonlinear Science, 19, 013106(2009)
[19] ZHOU, G. Y., LI, C. R., LI, T. T., WANG, C., HE, F. J., and SUN, J. C. Outer synchronization investigation between WS and NW small-world networks with different node numbers. Physica A:Statistical Mechanics and Its Applications, 457, 506-513(2016)
[20] ARELLANO-DELGADO, A., LOPEZ-GUTIERREZ, R. M., MARTINEZ-CLARK, R., and CURZ-HERNANDEZ, C. Small-world outer synchronization of small-world chaotic networks. Journal of Computational and Nonlinear Dynamics, 13, 101008(2018)
[21] CHEN, C., XIE, K., LEWIS, F. L., XIE, S., and FIERRO, R. Adaptive synchronization of multiagent systems with resilience to communication link faults. Automatica, 111, 108636(2020)
[22] DU, L., YANG, Y., and LEI, Y. M. Synchronization in a fractional-order dynamic network with uncertain parameters using an adaptive control strategy. Applied Mathematicsand Mechanics (English Edition), 39(3), 353-364(2018) https://doi.org/10.1007/s10483-018-2304-9
[23] WEN, G. H., WANG, P. J., YU, X. H., YU, W. W., and CAO, J. D. Pinning synchronization of complex switching networks with a leader of nonzero control inputs. IEEE Transactions on Circuits and Systems I:Regular Papers, 66, 3100-3112(2019)
[24] PRATAP, A., RAJA, R., CAO, J., RIHAN, F. A., and SEADAWY, A. R. Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations. Chaos, Solitons and Fractals, 131, 109491(2020)
[25] LI, F. B., DU, C. L., YANG, C. H., WU, L. G., and GUI, W. H. Finite-time asynchronous sliding mode control for Markovian jump systems. Automatica, 109, 108503(2019)
[26] LIU, J. X., WU, L. G., WU, C. W., LUO, W. S., and FRANQUELO, L. G. Event-triggering dissipative control of switched stochastic systems via sliding mode. Automatica, 103, 261-273(2019)
[27] LIU, J., JI, J. C., and ZHOU, J. Synchronization of networked multibody systems using fundamental equation of mechanics. Applied Mathematicsand Mechanics (English Edition), 37(5), 555-572(2016) https://doi.org/10.1007/s10483-016-2071-8
[28] LU, J. A., XIE, J., LU, J. H., and CHEN, S. H. Control chaos in transition system using sampleddata feedback. Applied Mathematicsand Mechanics (English Edition), 24(11), 1309-1315(2003) https://doi.org/10.1007/BF02439654
[29] GUO, Y. S. and CHEN, L. Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance. Applied Mathematicsand Mechanics (English Edition), 29(5), 583-590(2008) https://doi.org/10.1007/s10483-008-0503-1
[30] YIN, L. J., DENG, Z. H., HUO, B. Y., and XIA, Y. Q. Finite-time synchronization for chaotic gyros systems with terminal sliding mode control. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 49, 1131-1140(2017)
[31] ZHANG, C. X., WANG, J. H., ZHANG, D. X., and SHAO, X. W. Synchronization and tracking of multi-spacecraft formation attitude control using adaptive sliding mode. Asian Journal of Control, 21, 832-846(2019)
[32] UTKIN, V. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22, 212-222(1977)
[33] DING, S. H., PARK, J. H., and CHEN, C. C. Second-order sliding mode controller design with output constraint. Automatica, 112, 108704(2020)
[34] DU, H. B., CHEN, X. P., WEN, G. H., YU, X. H., and LU, J. H. Discrete-time fast terminal sliding mode control for permanent magnet linear motor. IEEE Transactions on Industrial Electronics, 65, 9916-9927(2018)
[35] YU, X. H. and MAN, Z. H. Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Transactions on Circuits and Systems I:Regular Papers, 49, 261-264(2002)
[36] FENG, Y., YU, X. H., and MAN, Z. H. Brief non-singular terminal sliding mode control of rigid manipulators. Automatica, 38, 2159-2167(2002)
[37] KHANZADEH, A. and POURGHOLI, M. Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dynamics, 88, 2637-2649(2017)
[38] AL-MAHBASHI, G. and NOORANI, M. S. M. Finite-time lag synchronization of uncertain complex dynamical networks with disturbances via sliding mode control. IEEE Access, 7, 7082-7092(2019)
[39] LI, C. R., LÜ, L., YANG, Y. M., ZHOU, S., and HONG, Y. X. Research on outer s ynchronization between uncertain time-varying networks with different node number. Physica A-Statistical Mechanics and Its Applications, 492, 2301-2309(2018)
[40] MANNE, K. K., HURD, A. J., and KENKRE, V. M. Nonlinear waves in reaction-diffusion systems:the effect of transport memory. Physical Review E, 61, 4177(2000)
[41] BURGERS, J. M. The Nonlinear Diffusion Equation:Asymptotic Solutions and Statistical Problems, Springer Science and Business Media, Boston (1977)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals