Articles

Stability of plane-parallel flow of magnetic fluids under external magnetic flelds

Expand
  • 1. Department of Mathematics, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília-DF 70910-900, Brazil;
    2. Laboratory of Microhydrodynamics and Rheology-Vortex Group, Department of Mechanical Engineering, University of Brasília, Campus Universitáario Darcy Ribeiro, Brasília-DF 70910-900, Brazil

Received date: 2021-06-28

  Revised date: 2021-11-23

  Online published: 2022-01-25

Abstract

In this work, we present a theoretical study on the stability of a twodimensional plane Poiseuille flow of magnetic fluids in the presence of externally applied magnetic flelds. The fluids are assumed to be incompressible, and their magnetization is coupled to the flow through a simple phenomenological equation. Dimensionless parameters are deflned, and the equations are perturbed around the base state. The eigenvalues of the linearized system are computed using a flnite difierence scheme and studied with respect to the dimensionless parameters of the problem. We examine the cases of both the horizontal and vertical magnetic flelds. The obtained results indicate that the flow is destabilized in the horizontally applied magnetic fleld, but stabilized in the vertically applied fleld. We characterize the stability of the flow by computing the stability diagrams in terms of the dimensionless parameters and determine the variation in the critical Reynolds number in terms of the magnetic parameters. Furthermore, we show that the superparamagnetic limit, in which the magnetization of the fluids decouples from hydrodynamics, recovers the same purely hydrodynamic critical Reynolds number, regardless of the applied fleld direction and of the values of the other dimensionless magnetic parameters.

Cite this article

P. Z. S. PAZ, F. R. CUNHA, Y. D. SOBRAL . Stability of plane-parallel flow of magnetic fluids under external magnetic flelds[J]. Applied Mathematics and Mechanics, 2022 , 43(2) : 295 -310 . DOI: 10.1007/s10483-022-2813-9

References

[1] ROSENSWEIG, R. E. Ferrohydrodynamics, Dover Publications Inc., New York (1997)
[2] ODENBACH, S. Ferrofluids: Magnetically Controllable Fluids and Their Applications, SpringerVerlag, New York (2002)
[3] PAPELL, S. S. Low Viscosity Magnetic Fluid Obtained by the Colloidal Suspension of Magnetic Particles, US Patent number 3215572, The United States of America (1963)
[4] SCHERER, C. and FIGUEIREDO NETO, A. M. Ferrofluids: properties and applications. Brazilian Journal of Physics, 35, 718-727 (2005)
[5] LÜBBE, A. S., ALEXIOU, C., and BERGEMANN, C. Clinical applications of magnetic drugtargeting. Journal of Surgical Research, 95(2), 200-206 (2001)
[6] BRUSENTSOV, N. A., NIKITIN, L. V., BRUSENTSOVA, T. N., KUZNETSOV, A. A., BAYBURTSKIY, F. S., SHUMAKOV, L. I., and JURCHENKO, N. Y. Magnetic fluid hyperthermia of the mouse experimental tumor. Journal of Magnetism and Magnetic Materials, 252, 378-380 (2002)
[7] CUNHA, F. R. and SOBRAL, Y. D. Characterization of the physical parameters in a process of magnetic separation and pressure-driven flow of a magnetic fluid. Physica A, 343, 36-64 (2004)
[8] RINALDI, C., CHAVES, A., ELBORAI, S., HE, X., and ZAHN, M. Magnetic fluid rheology and flows. Current Opinion in Colloid & Interface Science, 10, 141-157 (2005)
[9] SHLIOMIS, M. I. Efiective viscosity of magnetic suspensions. Soviet Physics JETP, 34, 1291-1294 (1972)
[10] SCHUMACHER, K. R., SELLIEN, I., KNOKE, G. S., CADER, T., and FINLAYSON, B. A. Experiment and simulation of laminar and turbulent ferrofluid pipe flow in an oscillating magnetic fleld. Physical Review E, 67, 026308 (2003)
[11] CHEN, T. S. and EATON, T. E. Magnetohydrodynamic stability of the developing laminar flow in a parallel-plate channel. Physics of Fluids, 15, 592-596 (1972)
[12] RADWAN, A. E. Stability of a force-free magnetic fleld of a conducting fluid cylinder. Zeitschrift für Angewandte Mathematik und Physik, 48, 827-839 (1997)
[13] ELDABEA, N. T. M., EL-SABBAGHB, M. F., and EL-SAYED, M. A. S. Hydromagnetic stability of plane Poiseuille and Couette flow of viscoelastic fluid. Fluid Dynamics Research, 38, 699-715 (2006)
[14] VISLOVICH, A. N., SINITSYN, A. K., and TYMANOVICH, V. V. Instability of plane-parallel Couette flow of a magnetic liquid in a homogeneous magnetic fleld. Magnitinaya Gidrodinamika, 2, 32-37 (1984)
[15] STILES, P. J. and BLENNERHASSETT, P. J. Stability of cylindrical Couette flow of a radially magnetized ferrofluids in a radial temperature gradient. Journal of Magnetism and Magnetic Materials, 122, 207-209 (1993)
[16] HART, J. E. Ferromagnetic rotating Couette flow: the role of magnetic viscosity. Journal of Fluid Mechanics, 453, 21-38 (2002)
[17] ALTMEYER, S., DO, Y., and LAI, Y. C. Transition to turbulence in Taylor-Couette ferrofluidic flow. Scientiflc Reports, 5, 10781 (2015)
[18] COWLEY, M. D. and ROSENSWEIG, R. E. The interfacial stability of a ferromagnetic fluid. Journal of Fluid Mechanics, 30, 671-688 (1967)
[19] ELHEFNAWY, A. R. F. Nonlinear Rayleigh-Taylor instability in magnetic fluids with uniform horizontal and vertical magnetic flelds. Zeitschrift für Angewandte Mathematik und Physik, 44, 495-509 (1993)
[20] YECKO, P. Stability of layered channel flow of magnetic fluids. Physics of Fluids, 21, 034102 (2009)
[21] LI, M. and ZHU, L. Interfacial instability of ferrofluid flow under the influence of a vacuum magnetic fleld. Applied Mathematics and Mechanics (English Edition), 42(8), 1171-1182 (2021) https://doi.org/10.1007/s10483-021-2758-7
[22] MUKHERJEE, A., VAIDYA, A., and YECKO, P. Laminar shear in a ferrofluid: stability studies. Magnetohydrodynamics, 49, 505-511 (2013)
[23] SCHMID, P. J. and HENNINGSON, D. S. Stability and Transition in Shear Flows, SpringerVerlag, New York (2001)
[24] CUNHA, F. R., SOBRAL, Y. D., and GONTIJO, R. G. Stabilization of concentration waves in fluidized beds of magnetic particles. Powder Technology, 241, 219-229 (2013)
[25] ENTOV, V. M., BARSOUM, M., and SHMARYAN, L. E. On capillary instability of jets of magneto-rheological fluids. Journal of Rheology, 40, 727-739 (1996)
[26] SCHMID, P. J. Nonmodal stability theory. Annual Review of Fluid Mechanics, 39, 129-162 (2007)
[27] KERSWELL, R. R. Nonlinear nonmodal stability theory. Annual Review of Fluid Mechanics, 50, 319-345 (2018)
[28] ZAHN, M. and PIOCH, L. L. Ferrofluid flows in AC and traveling wave magnetic flelds with efiective positive, zero or negative dynamic viscosity. Journal of Magnetism and Magnetic Materials, 201, 144-148 (1999)
[29] RINALDI, C. and ZAHN, M. Efiects of spin viscosity on ferrofluid flow proflles in alternating and rotating magnetic flelds. Physics of Fluids, 14, 2847-2870 (2002)
[30] KORLIE, M. S., MUKHERJEE, A., NITA, B. G., STEVENS, J. G., TRUBATCH, A. D., and YECKO, P. Analysis of flows of ferrofluids under simple shear. Magnetohydrodynamics, 44, 51-60 (2008)
[31] ROSA, A. P. Microstructure and Magnetorheology of Ferrofluids in Shear: Theory and Simulation (in Portuguese), Ph. D. dissertation, Universidade de Brasília (2018)
[32] ROSA, A. P., ABADE, G. C., and CUNHA, F. R. Computer simulations of equilibrium magnetization and microstructure in magnetic fluids. Physics of Fluids, 29, 092006 (2017)
[33] CARVALHO, D. D. and GONTIJO, R. G. Magnetization difiusion in duct flow: the magnetic entrance length and the interplay between hydrodynamic and magnetic timescales. Physics of Fluids, 32, 072007 (2020)
[34] DE VICENTE, J., KLINGENBERG, D. J., and HIDALGO-ALVAREZ, R. Magnetorheological fluids: a review. Soft Matter, 7, 3701-3710 (2011)
[35] RAMOS, D. M., CUNHA, F. R., SOBRAL, Y. D., and RODRIGUES, J. L. A. F. Computer simulations of magnetic fluids in laminar pipe flows. Journal of Magnetism and Magnetic Materials, 289, 238-241 (2005)
[36] CUNHA, F. R. and SOBRAL, Y. D. Asymptotic solution for pressure-driven flows of magnetic fluids in pipes. Journal of Magnetism and Magnetic Materials, 289, 314-317 (2005)
[37] SINGH, C., DAS, A. K., and DAS, P. K. Flow restrictive and shear reducing efiect of magnetization. Physics of Fluids, 28, 087103 (2016)
[38] ORSZAG, S. A. Accurate solution of the Orr-Sommerfeld stability equation. Journal of Fluid Mechanics, 50, 659-703 (1971)
[39] PEREIRA, I. D. O. Rheology of Ferrofluids in Shear Flows, M. Sc. dissertation, Universidade de Brasília (2019)
[40] PAPADOPOULOS, P. K., VAFEAS, P., and HATZIKONSTANTINOU, P. M. Ferrofluid pipe flow under the influence of the magnetic fleld of a cylindrical coil. Physics of Fluids, 24, 122002 (2012)
[41] TZIRTZILAKIS, E. E. and XENOS, M. A. Biomagnetic fluid flow in a driven cavity. Meccanica, 48, 187-200 (2013)
[42] SINZATO, Y. Z. and CUNHA, F. R. Modeling and experiments of capillary flow of non-symmetric magnetic fluids under uniform fleld. Journal of Magnetism and Magnetic Materials, 508, 166867 (2020)
[43] SINZATO, Y. Z. and CUNHA, F. R. Capillary flow of magnetic fluids with efiect of hydrodynamic dispersion. Physics of Fluids, 33, 102006 (2021)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals