Articles

Near-zero Poisson's ratio and suppressed mechanical anisotropy in strained black phosphorene/SnSe van der Waals heterostructure: a first-principles study

Expand
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2022-01-10

  Revised date: 2022-03-09

  Online published: 2022-05-05

Supported by

the National Natural Science Foundation of China (Nos.11572040 and 92163101),the National Key Research and Development Program of China (No.2019YFA0307900),and the Beijing Natural Science Foundation (No.Z190011)

Abstract

Black phosphorene (BP) and its analogs have attracted intensive attention due to their unique puckered structures, anisotropic characteristics, and negative Poisson's ratio. The van der Waals (vdW) heterostructures assembly by stacking different materials show novel physical properties, however, the parent materials do not possess. In this work, the first-principles calculations are performed to study the mechanical properties of the vdW heterostructure. Interestingly, a near-zero Poisson's ratio vzx is found in BP/SnSe heterostructure. In addition, compared with the parent materials BP and SnSe with strong in-plane anisotropic mechanical properties, the BP/SnSe heterostructure shows strongly suppressed anisotropy. The results show that the vdW heterostructure has quite different mechanical properties compared with the parent materials, and provides new opportunities for the mechanical applications of the heterostructures.

Cite this article

Qi REN, Xingyao WANG, Yingzhuo LUN, Xueyun WANG, Jiawang HONG . Near-zero Poisson's ratio and suppressed mechanical anisotropy in strained black phosphorene/SnSe van der Waals heterostructure: a first-principles study[J]. Applied Mathematics and Mechanics, 2022 , 43(5) : 627 -636 . DOI: 10.1007/s10483-022-2844-7

References

[1] NOVOSELOV, K. S. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004)
[2] GIOVANNETTI, G., KHOMYAKOV, P. A., BROCKS, G., KELLY, P. J., and BRINK, J. Substrate-induced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations. Physical Review B, 76, 073103(2007)
[3] RADISAVLJEVIC, B., RADENOVIC, A., BRIVIO, J., GIACOMETTI, V., and KIS, A. Singlelayer MoS2 transistors. Nature Nanotechnology, 6, 147-150(2011)
[4] BHIMANAPATI, G. R., LIN, Z., MEUNIER, V., JUNG, Y., CHA, J., DAS, S., XIAO, D., SON, Y., STRANO, M. S., COOPER, V. R., LIANG, L., LOUIE, S. G., RINGE, E., ZHOU, W., KIM, S. S., NAIK, R. R., SUMPTER, B. G., TERRONES, H., XIA, F., WANG, Y., ZHU, J., AKINWANDE, D., ALEM, N., SCHULLER, J. A., SCHAAK, R. E., TERRONES, M., and ROBINSON, J. A. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 9, 11509-11539(2015)
[5] TANG, X., DU, A., and KOU, L. Gas sensing and capturing based on two-dimensional layered materials:overview from theoretical perspective. WIREs Computational Molecular Science, 8, e1361(2018)
[6] WEI, Q. and PENG, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 104, 251915(2014)
[7] ZHU, L., ZHANG, G., and LI, B. Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Physical Review B, 90, 214302(2014)
[8] JIANG, J. W. and PARK, H. S. Negative Poisson's ratio in single-layer black phosphorus. Nature Communications, 5, 4727(2014)
[9] ZHANG, G., HUANG, S., CHAVES, A., SONG, C., OZÇ ELIK, V. O., LOW, T., and YAN, H. Infrared fingerprints of few-layer black phosphorus. Nature Communications, 8, 14071(2017)
[10] CHEN, C., CHEN, F., CHEN, X., DENG, B., ENG, B., JUNG, D., GUO, Q., YUAN, S., WATANABE, K., TANIGUCHI, T., LEE, M. L., and XIA, F. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Letters, 19, 1488-1493(2019)
[11] LIU, H., NEAL, A. T., ZHU, Z., LUO, Z., XU, X., TOMANEK, D., and YE, P. D. Phosphorene:an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033-4041(2014)
[12] LONG, G., MARYENKO, D., SHEN, J., XU, S., HOU, J., WU, Z., WONG, W. K., HAN, T., LIN, J., CAI, Y., LORTZ, R., and WANG, N. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Letters, 16, 7768-7773(2016)
[13] YUAN, H., LIU, X., AFSHINMANESH, F., LI, W., XU, G., SUN, J., LIAN, B., CURTO, A. G., YE, G., HIKITA, Y., SHEN, Z., ZHANG, S. C., CHEN, X., BRONGERSMA, M., HWANG, H. Y., and CUI, Y. Polarization-sensitive broadband photodetector using a black phosphorus bertical p-n junction. Nature Nanotechnology, 10, 707-713(2015)
[14] XIA, F., WANG, H., and JIA, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458(2014)
[15] LI, L., YU, Y., YE, G. J., GE, Q., OU, X., WU, H., FENG, D., CHEN, X. H., and ZHANG, Y. Black phosphorus field-effect transistors. Nature Nanotechnology, 9, 372-377(2014)
[16] GOMES, L. C., CARVALHO, A., and CASTRO-NETO, A. H. Enhanced piezoelectricity and modified dielectric screening of 2-D group-IV monochalcogenides. Physical Review B, 92, 214103(2015)
[17] QIN, G., QIN, Z., FANG, W. Z., ZHANG, L. C., YUE, S. Y., YAN, Q. B., HU, M., and SU, G. Diverse anisotropy of phonon transport in two-dimensional IV-VI compounds:a first-principles study. Nanoscale, 8, 11306(2016)
[18] XU, L., YANG, M., WANG, S. J., and FENG, Y. P. Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M=Ge, Sn; X=S, Se, Te). Physical Review B, 95, 235434(2017)
[19] ZHAO, L. D., LO, S. H., ZHANG, Y., SUN, H., TAN, G., UHER, C., WOLVERTON, C., DRAVID, V. P., and KANATZIDIS, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. nature, 508, 373-377(2014)
[20] ZHAO, L. D., TAN, G., HAO, S., HE, J., PEI, Y., CHI, H., WANG, H., GONG, S., XU, H., DRAVID, V. P., UHER, C., SNYDER, G. J., WOLVERTON, C., and KANATZIDIS, M. G. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 351, 141-144(2016)
[21] TAN, Q., ZHAO, L. D., LI, J. F., WU, C. F., WEI, T. R., XING, Z. B., and KANATZIDIS, M. G. Thermoelectrics with earth abundant elements:low thermal conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A, 2, 17302-17306(2014)
[22] SHI, G. and KIOUPAKIS, E. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. Journal of Applied Physics, 117, 065103(2015)
[23] WANG, M. X., YUE, G. H., LIN, Y. D., WEN, X., PENG, D. L., and GENG, Z. R. Synthesis, optical properties and photovoltaic application of the SnS quasi-one-dimensional nanostructures. Nano-Micro Letters, 5, 1-6(2013)
[24] HU, P., WEN, Z., WANG, L., TAN, P., and XIAO, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 6, 5988-5994(2012)
[25] LATE, D. J., LIU, B., LUO, J., YAN, A., MATTE, H. S. S. R., GRAYSON, M., RAO, C. N. R., and DRAVID, V. P. GaS and GaSe ultrathin layer transistors. Advanced Materials, 24, 3549-3554(2012)
[26] LIAO, L., BAI, J., QU, Y., LIN, Y., LI, Y., HUANG, Y., and DUAN, X. High-·oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proceedings of the National Academy of Sciences of the United States of America, 107, 6711-6715(2010)
[27] JARIWALA, D., MARKS, T. J., and HERSAM, M. C. Mixed-dimensional van der Waals heterostructures. Nature Materials, 16, 170-181(2017)
[28] CAO, Y., FATEMI, V., FANG, S., WATANABE, K., TANIGUCHI, T., KAXIRAS, E., and JARILLO-HERRERO, P. Unconventional superconductivity in magic-angle graphene superlattices. nature, 556, 43-50(2018)
[29] CAO, Y., FATEMI, V., DEMIR, A., FANG, S., TOMARKEN, S. L., LUO, J. Y., SANCHEZYAMAGISHI, J. D., WATANABE, K., TANIGUCHI, T., KAXIRAS, E., ASHOORI, R. C., and JARILLO-HERRERO, P. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. nature, 556, 80-84(2018)
[30] CHENG, J., YANG, X., SANG, L., GUO, L., HU, A., XU, F., TANG, N., WANG, X., and SHEN, B. High mobility AlGaN/GaN heterostructures grown on Si substrates using a large latticemismatch induced stress control technology. Applied Physics Letters, 106, 142106(2015)
[31] CAO, Y. H., LI, Y. F., HE, J. W., QIAN, C. X., ZHANG, Q., BAI, J. T., and FENG, H. J. Asymmetric strain-introduced interface effect on the electronic and optical properties of the CsPbI3/SnS van der Waals heterostructure. Advanced Materials Interfaces, 6, 1901330(2019)
[32] HOU, C., TAI, G., LIU, B., WU, Z., and YIN, Y. Borophene-graphene heterostructure:preparation and ultrasensitive humidity sensing. Nano Research, 14, 2337-2344(2021)
[33] LIU, X. L. and HERSAM, M. C. Borophene-graphene heterostructures. Science Advances, 5 eaax6444(2019)
[34] MORTAZAVI, B., SILANI, M., PODRYABINKIN, E. V., RABCZUK, T., ZHUANG, X., and SHAPEEV, A. V. First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials. Advanced Materials, 33, 2102807(2021)
[35] DOU, W., HUANG, A., JI, Y., YANG, X., XIN, Y., SHI, H., WANG, M., XIAO, Z., ZHOU, M., and CHU, P. K. Strain-enhanced power conversion e-ciency of a BP/SnSe van der Waals heterostructure. Physical Chemistry Chemical Physics, 22, 14787(2020)
[36] KONG, X., DENG, J., LI, L., LIU, Y., DING, X., SUN, J., and LIU, J. Z. Tunable auxetic properties in group-IV monochalcogenide monolayers. Physical Review B, 98, 184104(2018)
[37] BLOCHL, P. E. Projector augmented-wave method. Physical Review B, 50, 17953(1994)
[38] PERDEW, J. P., BURKE, K., and ERNZERHOF, M. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865(1996)
[39] KRESSE, G. and FURTHMULLER, J. E-cient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Physical Review B, 54, 11169(1996)
[40] KRESSE, G. and FURTHMULLER, J. E-ciency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15-50(1996)
[41] GRIMME, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787-1799(2006)
[42] BROWN, A. and RUNDQVIST, S. Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 19, 684-685(1965)
[43] HERIBET, B. and GEORG, V. Refinement of the structures of GeS, GeSe, SnS and SnSe. Zeitschrift für Kristallographie:Crystalline Materials, 148, 295-304(1978)
[44] SIRIKUMARA, H. I. and JAYASEKERA, T. Tunable indirect-direct transition of few-layer SnSe via interface engineering. Journal of Physics:Condensed Matter, 29, 425501(2017)
[45] LIU, F., MING, P., and LI, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 76, 064120(2007)
[46] LI, C. W., HONG, J., MAY, A. F., BANSAL, D., CHI, S., HONG, T., EHLERS, G., and DELAIRE, O. Orbitally driven giant phonon anharmonicity in SnSe. Nature Physics, 11, 1063-1069(2015)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals