[1] WITTIG, N. K., LAUGESEN, M., BIRKBAK, M. E., BACH-GANSMO, F. L., PACUREANU, A., BRUNS, S., WENDELBOE, M. H., BRUEL, A., SØENSEN, H. O., and THOMSEN, J. S. Canalicular junctions in the osteocyte lacuno-canalicular network of cortical bone. ACS Nano, 13(6), 6421-6430(2019)
[2] WANG, L. Solute transport in the bone lacunar-canalicular system (LCS). Current Osteoporosis Reports, 16(1), 32-41(2018)
[3] MARKEL, M. D. Bone structure and the response of bone to stress. Equine Fracture Repair, John Wiley and Sons, Inc, Hoboken (2019)
[4] MURSHID, S. A bone permeability and mechanotransduction:some current insights into the function of the lacunar-canalicular network. Tissue and Cell, 75, 101730(2022)
[5] PRIDEAUX, M., FINDLAY, D. M., and ATKINS, G. J. Osteocytes:the master cells in bone remodelling. Current Opinion in Pharmacology, 28, 24-30(2016)
[6] QIN, L., LIU, W., CAO, H., and XIAO, G. Molecular mechanosensors in osteocytes. Bone Research, 8, 115-138(2020)
[7] ALFIERI, R., VASSALLI, M., and VITI, F. Flow-induced mechanotransduction in skeletal cells. Biophysical Reviews, 11(5), 729-743(2019)
[8] REN, L., YANG, P., WANG, Z., ZHANG, J., DING, C., and SHANG, P. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. Journal of the Mechanical Behavior of Biomedical Materials, 50, 104-122(2015)
[9] WU, X., LI, C., CHEN, K., SUN, Y., YU, W., ZHANG, M., WANG, Y., QIN, Y., and CHEN, W. Multi-scale mechanotransduction of the poroelastic signals from osteon to osteocyte in bone tissue. Acta Mechanica Sinica, 36(4), 964-980(2020)
[10] WANG, L., DONG, J., and XIAN, C. J. Computational investigation on the biomechanical responses of the osteocytes to the compressive stimulus:a poroelastic model. BioMed Research International, 2018, 4071356(2018)
[11] PAUL, G. R., MALHOTRA, A., and M ÜLLER, R. Mechanical stimuli in the local in vivo environment in bone:computational approaches linking organ-scale loads to cellular signals. Current Osteoporosis Reports, 16(4), 395-403(2018)
[12] ADACHI, T. and KAMEO, Y. Computational biomechanics of bone adaptation by remodeling. Multiscale Mechanobiology of Bone Remodeling and Adaptation, Springer, Cham, 231-257(2018)
[13] BARON, C., NGUYEN, V. H., NAILI, S., and GUIVIER-CURIEN, C. Interaction of ultrasound waves with bone remodelling:a multiscale computational study. Biomechanics and Modeling in Mechanobiology, 19, 1755-1764(2020)
[14] WANG, L., DONG, J., and XIAN, C. J. Computational modeling of bone cells and their biomechanical behaviors in responses to mechanical stimuli. Critical Review in Eukaryotic Gene Expression, 29(1), 51-67(2019)
[15] KUMAR, R., TIWARI, A. K., TRIPATHI, D., SHRIVAS, N. V., and NIZAM, F. Canalicular fluid flow induced by loading waveforms:a comparative analysis. Journal of Theoretical Biology, 471, 59-73(2019)
[16] OSUMI, R., WANG, Z., ISHIHARA, Y., ODAGAKI, N., IIMURA, T., and KAMIOKA, H. Changes in the intra-and peri-cellular sclerostin distribution in lacuno-canalicular system induced by mechanical unloading. Journal of Bone and Mineral Metabolism, 39, 148-159(2020)
[17] KHADANGALE, S. B., HAJEBRAHIMI, S., FERGUSON, V. L., LYNCH, M. E., and MUKHERJEE, D. Fluid-structure interaction framework for fluid flow through the bone lacunar-canalicular system with morphological variations. Summer Biomechanics, Bioengineering and Biotransport Conference, Virtual Meeting (2020)
[18] WITTKOWSKE, C., REILLY, G. C., LACROIX, D., and PERRAULT, C. M. In vitro bone cell models:impact of fluid shear stress on bone formation. Frontiers in Bioengineering and Biotechnology, 4, 87(2016)
[19] WU, X., WANG, N., WANG, Z., YU, W., WANG, Y., GUO, Y., and CHEN, W. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon. BioMedical Engineering Online, 15, 149(2016)
[20] YU, W., WU, X., LI, C., SUN, Y., and CHEN, W. The trans-scale conduction behavior of fluid stimulation in loaded bone. Journal of Medical Biomechanics, 35, 81-88(2020)
[21] VAUGHAN, T. J., MULLEN, C. A., VERBRUGGEN, S. W., and MCNAMARA, L. M. Bone cell mechanosensation of fluid flow stimulation:a fluid-structure interaction model characterising the role integrin attachments and primary cilia. Biomechanics and Modeling in Mechanobiology, 14(4), 703-718(2015)
[22] JIN, Z. H., JANES, J. G., and PETERSON, M. L. A Chemo-poroelastic analysis of mechanically induced fluid and solute transport in an osteonal cortical bone. Annals of Biomedical Engineering, 49(1), 299-309(2021)
[23] MIN, S., LEE, T., LEE, S. H., and HONG, J. Theoretical study of the effect of piezoelectric bone matrix on transient fluid flow in the osteonal lacunocanaliculae. Journal of Orthopaedic Research, 36, 2239-2249(2018)
[24] LEPPIK, L., OLIVEIRA, K. M. C., BHAVSAR, M. B., and BARKER, J. H. Electrical stimulation in bone tissue engineering treatments. European Journal of Trauma and Emergency Surgery, 46(2), 231-244(2020)
[25] NING, C., YU, P., ZHU, Y., YAO, M., ZHU, X., WANG, X., LIN, Z., LI, W., WANG, S., TAN, G., ZHANG, Y., WANG, Y., and MAO, C. Built-in microscale electrostatic fields induced by anatase-rutile-phase transition in selective areas promote osteogenesis. NPG Asia Materials, 8, e243(2016)
[26] WANG, S. W. and ZHAO, M. L. Closed-form solutions of transient electro-osmotic flow driven by AC electric field in a microannulus. Boundary Value Problems, 2014, 215(2014)
[27] SANSALONE, V., KAISER, J., NAILI, S., and LEMAIRE, T. Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu:a multi-parametric sensitivity analysis. Biomechanics and Modeling in Mechanobiology, 12(3), 533-553(2013)
[28] BUENZLI, P. R. and SIMS, N. A. Quantifying the osteocyte network in the human skeleton. Bone, 75, 144-150(2015)
[29] KLEIN-NULEND, J., BAKKER, A. D., BACABAC, R. G., VATSA, A., and WEINBAUM, S. Mechanosensation and transduction in osteocytes. Bone, 54, 182-190(2013)
[30] WANG, Z. Theoretical and simulation research for cell rectangular microfluidic culture chamber under the pressure gradient and electric field driven loads, M. Sc. dissertation, Taiyuan University of Technology (2018)
[31] TRIPATHI, D., BHUSHAN, S., and BÉG, O. A. Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis. Alexandria Engineering Journal, 57(3), 1349-1359(2018)
[32] LAI, X., PRICE, C., MODLA, S., THOMPSON, W. R., CAPLAN, J., KIRN-SAFRAN, C. B., and WANG, L. The dependences of osteocyte network on bone compartment, age, and disease. Bone Research, 3, 15009(2015)
[33] SÁNCHEZ, M. T., PÉREZ, M. A., and GARCÍA-AZNAR, J. M. The role of fluid flow on bone mechanobiology:mathematical modeling and simulation. Computational Geosciences, 25, 823-830(2020)
[34] GATTI, V., AZOULAY, E. M., and FRITTON, S. P. Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone. Journal of Biomechanics, 66, 127-136(2018)
[35] RIQUELME, M. A., CARDENAS, E. R., XU, H., and JIANG, J. X. The role of connexin channels in the response of mechanical loading and unloading of bone. International Journal of Molecular Sciences, 21(3), 1146(2020)