[1] PEDLOSKY, J. Geophysical Fluid Dynamics, 2nd ed., Springer-Verlag, New York (1987)
[2] ROSSBY, C. G. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. Journal of Marine Research, 2(1), 38-55(1939)
[3] CHARNEY, J. G. On the scale of atmospheric motions. Geofysislw Publikasjoner, 17(2), 251-265(1948)
[4] BERGGREN, R., BOLIN, B., and ROSSBY, C. G. An aerological study of zonal motion, its perturbations and break-down. Tellus, 1(2), 14-37(1949)
[5] LONG, R. R. Solitary waves in the westerlies. Journal of the Atmospheric Sciences, 21(2), 197-200(1949)
[6] REDEKOPP, L. G. and WEIDMAN, P. D. Solitary Rossby waves in zonal shear flows and their interactions. Journal of the Atmospheric Sciences, 35(5), 790-804(1978)
[7] CHARNEY, J. G. and DEVORE, J. G. Multiple flow equilibria in the atmosphere and blocking. Journal of the Atmospheric Sciences, 36(7), 1205-1216(1979)
[8] MCWILLIAMS, J. C. An application of equivalent modons to atmospheric blocking. Dynamics of Atmospheres and Oceans, 5(1), 43-66(1980)
[9] SHUTTS, G. J. The propagation of eddies in diffluent jetstreams:eddy vorticity forcing of ‘blocking’ flow fields. Quarterly Journal of the Royal Meteorological Society, 109(462), 737-761(1983)
[10] MALGUZZI, P. and MALANOTTE-RIZZOLI, P. Nonlinear stationary Rossby waves on nonuniform zonal winds and atmospheric blocking, part I:the analytica theory. Journal of the Atmospheric Sciences, 41(17), 2620-2628(1984)
[11] LUO, D. H. and JI, L. R. Observational study of dipole blocking in the atmosphere (in Chinese). Chinese Journal of Atmospheric Sciences, 15(4), 52-57(1991)
[12] LUO, D. H. Solitary Rossby waves in the rotating atmosphere and dipole blocking (in Chinese). Acta Meteorologica Sinica, 49(4), 548-552(1991)
[13] LUO, D. H. Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies. Dynamics of Atmospheres and Oceans, 32(1), 27-74(2000)
[14] LUO, D. H. Abarotropic envelope Rossby soliton model for block-eddy interaction, part I:effect of topography. Journal of the Atmospheric Sciences, 62(1), 5-21(2005)
[15] LUO, D. H., ZHANG, W. Q., ZHONG, L. H., and DAI, A. G. A nonlinear theory of atmospheric blocking:a potential vorticity gradient view. Journal of the Atmospheric Sciences, 76(8), 2399-2427(2019)
[16] LU, C. N., FU, C., and YANG, H. W. Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Applied Mathematics and Computation, 327, 104-116(2018)
[17] ZHANG, R. G. and YANG, L. G. Nonlinear Rossby waves in zonally varying flow under generalized beta approximation. Dynamics of Atmospheres and Oceans, 85, 16-27(2019)
[18] WANG, J., ZHANG, R. G., and YANG, L. G. Solitary waves of nonlinear barotropic-baroclinic coherent structures. Physics of Fluids, 32(9), 096604(2020)
[19] WANG, J., ZHANG, R. G., and YANG, L. G. A Gardner evolution equation for topographic Rossby waves and its mechanical analysis. Applied Mathematics and Computation, 385, 125426(2020)
[20] ZHANG, J. Q., ZHANG, R. G., YANG, L. G., LIU, Q. S., and CHEN, L. G. Coherent structures of nonlinear barotropic-baroclinic interaction in unequal depth two-layer model. Applied Mathematics and Computation, 408, 126347(2021)
[21] CIRO, D., RAPHALDINI, B., and RAUPP, C. F. M. Topography-induced locking of drifting Rossby-Haurwitz waves. Physics of Fluids, 32, 046601(2020)
[22] SHI, Y. L., YANG, D. Z., FENG, X. R., QI, J. F., YANG, H. W., and YIN, B. S. One possible mechanism for eddy distribution in zonal current with meridional shear. Scientific Reports, 8(1), 10106(2018)
[23] SHI, Y. L., YANG, D. Z., and YIN, B. S. The effect of background flow shear on the topographic Rossby wave. Journal of Oceanography, 76, 307-315(2020)
[24] SOLOMON, T. H., HOLLOWAY, W. J., and SWINNEY, H. L. Shear flow instabilities and Rossby waves in barotropic flow in a rotating annulus. Physics of Fluids A:Fluid Dynamics, 5(8), 1971-1982(1993)
[25] HODYSS, D. and NOLAN, D. S. The Rossby-inertia-buoyancy instability in baroclinic vortices. Physics of Fluids, 20(9), 096602(2008)
[26] KALASHNIK, M. V., CHKHETIANI, O. G., and KURGANSKY, M. V. Discrete SQG models with two boundaries and baroclinic instability of jet flows. Physics of Fluids, 33, 076608(2021)
[27] ZHANG, X. J., ZHANG, H. X., YANG, Y. Y., and SONG, J. Effect of quadric shear basic zonal flows and topography on baroclinic instability. Tellus A:Dynamic Meteorology and Oceanography, 72(1), 1-9(2020)
[28] YANG, Y. Y. and SONG, J. On the generalized eigenvalue problem of Rossby waves vertical velocity under the condition of zonal mean flow and topography. Applied Mathematics Letters, 121, 107485(2021)
[29] BERLOFF, P. S. and MCWILLIAMS, J. C. Quasigeostrophic dynamics of the western boundary current. Journal of Physical Oceanography, 29(10), 2607-2634(1998)
[30] POULIN, F. J. The Instability of Time-dependent Jets, Ph. D. dissertation, Massachusetts Institute of Technology, Massachusetts (2002)
[31] HUANG, F., TANG, X. Y., LOU, S. Y., and LU, C. H. Evolution of dipole-type blocking life cycles:analytical diagnoses and observations. Journal of the Atmospheric Sciences, 64(1), 52-73(2007)
[32] RADKO, T. Instabilities of a time-dependent shear flow. Journal of Physical Oceanography, 49(9), 2377-2392(2019)
[33] RADKO, T. Barotropic instability of a time-dependent parallel flow. Journal of Fluid Mechanics 922, A11(2021)
[34] YAN, X. M., KANG, D. J., CURCHITSER, E. N., and PANG, C. G. Energetics of dddy-mean flow interactions along the western boundary currents in the north pacific. Journal of Physical Oceanography, 49, 789-810(2019)
[35] NATAROV, A., RICHARDS, K. J., and MCCREARY, J. P. Two-dimensional instabilities of time-dependent zonal flows:linear shear. Journal of Fluid Mechanics, 599, 29-50(2008)
[36] PENG, K., ROTUNNO, R., and BRYAN, G. H. Evaluation of a time-dependent model for the intensification of tropical cyclones. Journal of the Atmospheric Sciences, 75(6), 2125-2138(2018)
[37] FAN, E. G. Connections among homogeneous balance method, Weiss-Tabor-Carnevale method and Clarkson-Kruskal method (in Chinese). Acta Physica Sinica, 49(8), 1409-1412(2000)
[38] SHEN, S. F. Clarkson-Kruskal direct dimilarity approach for differential-difference equations. Communications in Theoretical Physics, 44(12), 964-966(2005)
[39] LI, X. Z., ZHANG, J. L., and WANG, M. L. Solving KdV eauation with variable coefficients by using F-expansion method (in Chinese). Journal of Yunnan University (Natural Sciences Edition), 28(3), 222-226(2006)
[40] SHEN, S. J. Varied solitary wave solutions of KdV equation with variable coefficients (in Chinese). Journal of Shaoxing University (Natural Sciences), 32(02), 12-16(2012)
[41] LIU, S. S., FU, Z. T., LIU, S. D., and ZHAO, Q. Jacobi elliptic function expansion solution to the variable coefficient nonlinear equations (in Chinese). Acta Physica Sinica, 51(9), 1923-1926(2002)
[42] FU, Z. T., LIU, S. D., LIU, S. S., and ZHAO, Q. New exact solution to KdV equations with variable coefficients or forcing. Applied Mathematics and Mechanics (English Edition), 25(1), 73-79(2004) https://doi.org/10.1007/BF02437295
[43] LUO, D. H. Solitary Rossby waves with the Bata parameter and dipole blocking (in Chinese). Quarterly Journal of Applied Meteorolog, 6(02), 220-227(1995)
[44] LUO, D. H. and XU, H. The influence of background westerly wind on the formation of blocking by localized synoptic-scale eddies (in Chinese). Journal of Ocean University of Qingdao (Natural Sciences Edition), 32(4), 501-510(2002)
[45] WU, H. Comparison of the vorticity and divergence in two common meteorological coordinate systems (in Chinese). Meteorological Monthly, 47(09), 1156-1161(2021)