[1] DOUGLAS, S. M., DIETZ, H., LIEDL, T., HOGBERG, B., GRAF, F., and SHIH, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. nature, 459(7245), 414-418(2009)
[2] MARRAS, A. E., ZHOU, L. F., SU, H. J., and CASTRO, C. E. Programmable motion of DNA origami mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 112(3), 713-718(2015)
[3] JIANG, S. X., GE, Z. L., MOU, S., YAN, H., and FAN, C. H. Designer DNA nanostructures for therapeutics. Chem, 7(5), 1156-1179(2020)
[4] KAUERT, D. J., KURTH, T., LIEDL, T., and SEIDEL, R. Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Letters, 11(12), 5558-5563(2011)
[5] MA, Z. P., KIM, Y. J., PARK, S., HIRAI, Y., TSUCHIYA, T., KIM, D. N., and TABATA, O. Direct measurement of transversely isotropic DNA nanotube by force-distance curve-based atomic force microscopy. Micro and Nano Letters, 10(10), 513-517(2015)
[6] NASKAR, S. and MAITI, P. K. Mechanical properties of DNA and DNA nanostructures:comparison of atomistic, Martini and oxDNA. Journal of Materials Chemistry B, 9, 5102-5113(2021)
[7] LIEDL, T., HOGBERG, B., TYTELL, J., INGBER, D. E., and SHIH, W. M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature Nanotechnology, 5(7), 520-524(2010)
[8] PFITZNER, E., WACHAUF, C., KILCHHERR, F., PELZ, B., SHIH, W. M., RIEF, M., and DIETZ, H. Rigid DNA beams for high-resolution single-molecule mechanics. Angewandte Chemie (International Edition in English), 52(30), 7766-7771(2013)
[9] ARBONA, J. M., AIME, J. P., and ELEZGARAY, J. Modeling the mechanical properties of DNA nanostructures. Physical Review E, 86(5), 051912(2012)
[10] STREY, H. H., PARSEGIAN, V. A., and PODGORNIK, R. Equation of state for DNA liquid crystals:fluctuation enhanced electrostatic double layer repulsion. Physical Review Letters, 78(5), 895-898(1997)
[11] GANG, B. Mechanics of biomolecules. Journal of the Mechanics and Physics of Solids, 50(11), 2237-2274(2002)
[12] BUSTAMANTE, C., BRYANT, Z., and SMITH, S. B. Ten years of tension:single-molecule DNA mechanics. nature, 421(6921), 423-427(2003)
[13] ZHANG, N. H. and SHAN, J. Y. An energy model for nanomechanical deflection of cantilever-DNA chip. Journal of the Mechanics and Physics of Solids, 56(6), 2328-2337(2008)
[14] SCHIFFELS, D., LIEDL, T., and FYGENSON, D. K. Nanoscale structure and microscale stiffness of DNA nanotubes. ACS Nano, 7(8), 6700-6710(2013)
[15] ZHOU, L. F., MARRAS, A. E., SU, H. J., and CASTRO, C. E. DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano, 8(1), 27-34(2014)
[16] LIU, Y. Z. and XUE, Y. Stability analysis of helical rod based on exact Cosserat model. Applied Mathematics and Mechanics (English Edition), 32(5), 603-612(2011) https://doi.org/10.1007/s10483-011-1442-8
[17] STREY, H. H., PARSEGIAN, V. A., and PODGORNIK, R. Equation of state for polymer liquid crystals:theory and experiment. Physical Review E, 59(1), 999-1008(1999)
[18] BAUMANN, C. G., BLOOMFIELD, V. A., SMITH, S. B., BUSTAMANTE, C., and BLOCK, S. M. Stretching of single collapsed DNA molecules. Biophysical Journal, 78(4), 1965-1978(2000)
[19] OBERMAYER, B. and FREY, E. Tension dynamics and viscoelasticity of extensible wormlike chains. Physical Review E, 80, 040801(2009)
[20] LU, W., LI, X. B., ZHANG, C. Y., and ZHANG, N. H. The model of torsional rigidity of DNA nanotube (in Chinese). Chinese Quarterly of Mechanics, 39(1), 33-38(2018)
[21] ZHOU, H. J., ZHANG, Y., and OUYANG, Z. C. Bending and base-stacking interactions in double-stranded DNA. Physical Review Letters, 82(22), 4560-4563(1999)
[22] WANG, J. Z. and LI, R. H. Stretching strongly confined semiflexible polymer chain. Applied Mathematics and Mechanics (English Edition), 35(10), 1233-1238(2014) https://doi.org/10.1007/s10483-014-1862-9
[23] WU, C. X., ZHANG, N. H., ZHANG, C. Y., and WU, J. Z. Regulation of thermoelastic properties of concave-packaged DNA adsorption films and its relevant microcantilever detection signals. Acta Mechanica Sinica (English Series), 37(4), 705-711(2021)
[24] MARKO, J. F. and SIGGIA, E. D. Stretching DNA. Macromolecules, 28(26), 8759-8770(1995)
[25] WANG, J. Z., QIAN, J., and GAO, H. J. Stability of molecular adhesion mediated by confined polymer repellers and ligand-receptor bonds. Molecular and Cellular Biomechanics, 5(1), 19-25(2008)
[26] ODIJK, T. Stiff chains and filaments under tension. Macromolecules, 28(20), 7016-7018(1995)
[27] MANNING, G. S. The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophysical Journal, 91(10), 3607-3616(2006)
[28] GEGGIER, S., KOTLYAR, A., and VOLOGODSKII, A. Temperature dependence of DNA persistence length. Nucleic Acids Research, 39(4), 1419-1426(2011)
[29] BAUMANN, C. G., SMITH, S. B., BLOOMFIELD, V. A., and BUSTAMANTE, C. Ionic effects on the elasticity of single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6185-6190(1997)
[30] STRICK, T. R., ALLEMAND, J. F., BENSIMON, D., and CROQUETTE, V. Stress-induced structural transitions in DNA and proteins. Annual Review of Biophysics and Biomolecular Structure, 29(1), 523-543(2000)
[31] CHENG, C. L., GONG, B., and QIAN, J. Mechanical responses of crosslinked biopolymer networks (in Chinese). Applied Mathematics and Mechanics, 37(5), 441-458(2016)
[32] JOSHI, H., KAUSHIK, A., SEEMAN, N. C., and MAITI, P. K. Nanoscale structure and elasticity of pillared DNA nanotubes. ACS Nano, 10(8), 7780-7791(2016)
[33] XIAO, H. DNA elastic nonlinearities:remarkable combination of high compliance and high rigidity (in Chinese). Journal of Shanghai University (Nature Science), 18(5), 441-447(2012)