Articles

Control of epileptic activities in a cortex network of multiple coupled neural populations under electromagnetic induction

Expand
  • 1. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China;
    2. School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710062, China

Received date: 2022-09-15

  Revised date: 2022-12-30

  Online published: 2023-02-27

Supported by

the National Natural Science Foundation of China (Nos. 11772254 and 11972288) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China (No. CX2021106)

Abstract

Epilepsy is believed to be associated with the abnormal synchronous neuronal activity in the brain, which results from large groups or circuits of neurons. In this paper, we choose to focus on the temporal lobe epilepsy, and establish a cortex network of multiple coupled neural populations to explore the epileptic activities under electromagnetic induction. We demonstrate that the epileptic activities can be controlled and modulated by electromagnetic induction and coupling among regions. In certain regions, these two types of control are observed to show exactly reverse effects. The results show that the strong electromagnetic induction is conducive to eliminating the epileptic seizures. The coupling among regions has a conduction effect that the previous normal background activity of the region gives way to the epileptic discharge, owing to coupling with spike wave discharge regions. Overall, these results highlight the role of electromagnetic induction and coupling among the regions in controlling and modulating epileptic activities, and might provide novel insights into the treatments of epilepsy.

Cite this article

Zhongkui SUN, Yuanyuan LIU, Xiaoli YANG, Wei XU . Control of epileptic activities in a cortex network of multiple coupled neural populations under electromagnetic induction[J]. Applied Mathematics and Mechanics, 2023 , 44(3) : 499 -514 . DOI: 10.1007/s10483-023-2969-9

References

[1] SPORNS, O., TONONI, G., and KÖTTER, R. The human connectome: a structural description of the human brain. PLoS Computational Biology, 1(4), e42(2005)
[2] BISWAL, B. B., MENNES, M., ZUO, X. N., GOHEL, S., KELLY, C., SMITH, S. M., BECKMANN, C. F., ADELSTEIN, J. S., BUCKNER, R. L., and COLCOMBE, S. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734-4739(2010)
[3] HARI, R. and SALMELIN, R. Magnetoencephalography: from SQUIDs to neuroscience: NeuroImage 20th anniversary special edition. NeuroImage, 61(2), 386-396(2012)
[4] BULLMORE, E. and SPORNS, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198(2009)
[5] BULLMORE, E. and SPORNS, O. The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336-349(2012)
[6] SUK, H., WEE, C. Y., LEE, S. W., and SHEN, D. G. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage, 129, 292-307(2016)
[7] HAGMANN, P., CAMMOUN, L., GIGANDET, X., MEULI, R., HONEY, C. J., WEDEEN, V. J., and SPORNS, O. Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159(2008)
[8] XIA, M. R., WANG, J. H., and HE, Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One, 8(7), e68910(2013)
[9] KIM, J., CALHOUN, V. D., SHIM, E., and LEE, J. H. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage, 124, 127-146(2016)
[10] XIA, C. H., MA, Z. M., CIRIC, R., GU, S., BETZEL, R. F., KACZKURKIN, A. N., CALKINS, M. E., COOK, P. A., GARCÍA DE LA GARZA, A., and VANDEKAR, S. N. Linked dimensions of psychopathology and connectivity in functional brain networks. Nature Communications, 9(1), 1-14(2018)
[11] WANG, R. B., ZHANG, Z. K., and TSE, C. K. Neurodynamics analysis of brain information transmission. Applied Mathematics and Mechanics (English Edition), 30(11), 1415-1428(2009) https://doi.org/10.1007/s10483-009-1107-y
[12] LIANG, S. and WANG, Z. H. Controlling a neuron by stimulating a coupled neuron. Applied Mathematics and Mechanics (English Edition), 40(1), 13-24(2019) https://doi.org/10.1007/s10483-019-2407-8
[13] YU, Y., WANG, X. M., WANG, Q. S., and WANG, Q. Y. A review of computational modeling and deep brain stimulation: applications to Parkinson's disease. Applied Mathematics and Mechanics (English Edition), 41(12), 1747-1768(2020) https://doi.org/10.1007/s10483-020-2689-9
[14] ENGLOT, D. J., HINKLEY, L. B., KORT, N. S., IMBER, B. S., MIZUIRI, D., HONMA, S. M., FINDLAY, A. M., GARRETT, C., CHEUNG, P. L., and MANTLE, M. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain, 138(8), 2249-2262(2015)
[15] HUTCHINGS, F., HAN, C. E., KELLER, S. S., WEBER, B., TAYLOR, P. N., and KAISER, M. Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLoS Computational Biology, 11(12), e1004642(2015)
[16] FAN, D. G., ZHENG, Y. H., YANG, Z. C., and WANG, Q. Y. Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit. Applied Mathematics and Mechanics (English Edition), 41(9), 1287-1302(2020) https://doi.org/10.1007/s10483-020-2644-8
[17] YANG, D. P. and ROBINSON, P. A. Unified analysis of global and focal aspects of absence epilepsy via neural field theory of the corticothalamic system. Physical Review E, 100(3), 032405(2019)
[18] WANG, Z. H. and WANG, Q. Y. Stimulation strategies for absence seizures: targeted therapy of the focus in coupled thalamocortical model. Nonlinear Dynamics, 96(2), 1649-1663(2019)
[19] LIU, S. Y. and WANG, Q. Y. Transition dynamics of generalized multiple epileptic seizures associated with thalamic reticular nucleus excitability: a computational study. Communications in Nonlinear Science and Numerical Simulation, 52, 203-213(2017)
[20] FISCH, B. J. and SPEHLMANN, R. Fisch and Spehlmann's EEG Primer: Basic Principles of Digital and Analog EEG, Elsevier Health Sciences, Amsterdam (1999)
[21] LILEY, D. T., CADUSCH, P. J., and DAFILIS, M. P. A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13(1), 67(2001)
[22] ROBINSON, P., RENNIE, C., and ROWE, D. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65(4), 041924(2002)
[23] FERRAT, L. A., GOODFELLOW, M., and TERRY, J. R. Classifying dynamic transitions in high dimensional neural mass models: a random forest approach. PLoS Computational Biology, 14(3), e1006009(2018)
[24] CHEN, M., GUO, D., LI, M., MA, T., WU, S., MA, J., CUI, Y., XIA, Y., XU, P., and YAO, D. Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures. PLoS Computational Biology, 11(10), e1004539(2015)
[25] VINAYA, M. and IGNATIUS, R. P. Electromagnetic radiation from memristor applied to basal ganglia helps in controlling absence seizures. Nonlinear Dynamics, 101(4), 2369-2380(2020)
[26] ZHAO, J. Y. and WANG, Q. Y. The dynamical role of electromagnetic induction in epileptic seizures: a double-edged sword. Nonlinear Dynamics, 106(1), 975-988(2021)
[27] BEURLE, R. L. Properties of a mass of cells capable of regenerating pulses. Philosophical Transactions of the Royal Society of London, A240, 55-94(1956)
[28] WILSON, H. R. and COWAN, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 1-24(1972)
[29] WILSON, H. R. and COWAN, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55-80(1973)
[30] DA SILVA, F. L., HOEKS, A., SMITS, H., and ZETTERBERG, L. Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik, 15(1), 27-37(1974)
[31] JANSEN, B. H., ZOURIDAKIS, G., and BRANDT, M. E. A neurophysiologically-based mathematical model of flash visual evoked potentials. Biological Cybernetics, 68(3), 275-283(1993)
[32] JANSEN, B. H. and RIT, V. G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73(4), 357-366(1995)
[33] WENDLING, F., BARTOLOMEI, F., BELLANGER, J. J., and CHAUVEL, P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience, 15(9), 1499-1508(2002)
[34] WANG, P. and KNÖSCHE, T. R. A realistic neural mass model of the cortex with laminar-specific connections and synaptic plasticity-evaluation with auditory habituation. PLoS One, 8(10), e77876(2013)
[35] SHEN, Z., DENG, Z. C., DU, L., ZHANG, H. H., YAN, L. Y., and XIAO, P. C. Control and analysis of epilepsy waveforms in a disinhibition model of cortex network. Nonlinear Dynamics, 103(2), 2063-2079(2021)
[36] WENDLING, F., BELLANGER, J. J., BARTOLOMEI, F., and CHAUVEL, P. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biological Cybernetics, 83(4), 367-378(2000)
[37] DAVID, O. and FRISTON, K. J. A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20(3), 1743-1755(2003)
[38] ZAVAGLIA, M., ASTOLFI, L., BABILONI, F., and URSINO, M. A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks. Journal of Neuroscience Methods, 157(2), 317-329(2006)
[39] PONS, A. J., CANTERO, J. L., ATIENZA, M., and GARCIA-OJALVO, J. Relating structural and functional anomalous connectivity in the aging brain via neural mass modeling. NeuroImage, 52(3), 848-861(2010)
[40] KAMENEVA, T., YING, T., GUO, B., and FREESTONE, D. R. Neural mass models as a tool to investigate neural dynamics during seizures. Journal of Computational Neuroscience, 42(2), 203-215(2017)
[41] AHMADIZADEH, S., KAROLY, P. J., NEŠIC, D., GRAYDEN, D. B., COOK, M. J., SOUDRY, D., and FREESTONE, D. R. Bifurcation analysis of two coupled Jansen-Rit neural mass models. PloS One, 13(3), e0192842(2018)
[42] CAO, Y., HE, X. Y., HAO, Y. Q., and WANG, Q. Y. Transition dynamics of epileptic seizures in the coupled thalamocortical network model. International Journal of Bifurcation and Chaos, 28(8), 1850104(2018)
[43] ZHANG, H. H. and XIAO, P. C. Seizure dynamics of coupled oscillators with epileptor field model. International Journal of Bifurcation and Chaos, 28(3), 1850041(2018)
[44] LV, M., WANG, C. N., REN, G. D., MA, J., and SONG, X. L. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3), 1479-1490(2016)
[45] LV, M., MA, J., YAO, Y. G., and ALZAHRANI, F. Synchronization and wave propagation in neuronal network under field coupling. Science China Technological Sciences, 62(3), 448-457(2019)
[46] LIU, Y. Y., SUN, Z. K., YANG, X. L., and XU, W. Dynamical robustness and firing modes in multilayer memristive neural networks of nonidentical neurons. Applied Mathematics and Computation, 409, 126384(2021)
[47] LIU, Y. Y., SUN, Z. K., YANG, X. L., and XU, W. Analysis of dynamical robustness of multilayer neuronal networks with inter-layer ephaptic coupling at different scales. Applied Mathematical Modelling, 112, 156-167(2022)
[48] LIU, Y. Y., SUN, Z. K., YANG, X. L., and XU, W. Rhythmicity and firing modes in modular neuronal network under electromagnetic field. Nonlinear Dynamics, 104(4), 4391-4400(2021)
[49] ZHOU, C. S., ZEMANOVA, L., ZAMORA-LOPEZ, G., HILGETAG, C. C., and KURTHS, J. Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New Journal of Physics, 9(6), 178(2007)
[50] HUO, S. Y., TIAN, C. H., ZHENG, M. H., GUAN, S. G., ZHOU, C. S., and LIU, Z. H. Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain. National Science Review, 8(1), nwaa125(2021)
[51] ANTONY, A. R., ALEXOPOULOS, A. V., GONZÁLEZ-MARTÍNEZ, J. A., MOSHER, J. C., JEHI, L., BURGESS, R. C., SO, N. K., and GALÁN, R. F. Functional connectivity estimated from intracranial EEG predicts surgical outcome in intractable temporal lobe epilepsy. PLoS One, 8(10), e77916(2013)
[52] HUNTENBURG, J. M., BAZIN, P. L., and MARGULIES, D. S. Large-scale gradients in human cortical organization. Trends in Cognitive Sciences, 22(1), 21-31(2018)
[53] FULCHER, B. D., MURRAY, J. D., ZERBI, V., and WANG, X. J. Multimodal gradients across mouse cortex. Proceedings of the National Academy of Sciences, 116(10), 4689-4695(2019)
[54] MARTEN, F., RODRIGUES, S., SUFFCZYNSKI, P., RICHARDSON, M. P., and TERRY, J. R. Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics. Physical Review E, 79(2), 021911(2009)
[55] BLENKINSOP, A., VALENTIN, A., RICHARDSON, M. P., and TERRY, J. R. The dynamic evolution of focal-onset epilepsies-combining theoretical and clinical observations. European Journal of Neuroscience, 36(2), 2188-2200(2012)
[56] FAN, X., GASPARD, N., LEGROS, B., LUCCHETTI, F., ERCEK, R., and NONCLERCQ, A. Dynamics underlying interictal to ictal transition in temporal lobe epilepsy: insights from a neural mass model. European Journal of Neuroscience, 47(3), 258-268(2018)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals