Applied Mathematics and Mechanics >
Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter
Received date: 2023-11-30
Online published: 2024-04-08
Supported by
the National Natural Science Foundation of China(12072209);the National Natural Science Foundation of China(U21A20430);the National Natural Science Foundation of China(12192211);the Natural Science Foundation of Hebei Province of China(A2020210009);the S&T Program of Hebei Province of China(225676162GH);Project supported by the National Natural Science Foundation of China (Nos.12072209, U21A20430, and 12192211), the Natural Science Foundation of Hebei Province of China (No.A2020210009), and the S&T Program of Hebei Province of China (No.225676162GH)
Copyright
This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor (PSC) half-space subject to a rigid flat-ended cylindrical indenter. The contact area and other surface of the PSC half-space are assumed to be electrically insulating. By the Hankel integral transformation, the problem is reduced to the Fredholm integral equation of the second kind. This equation is solved numerically to obtain the indentation behaviors of the PSC half-space, mainly including the indentation force-depth relation and the electric potential-depth relation. The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration. The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs. Finite element simulations are conducted to verify the results calculated by the integral equation technique, and good agreement is demonstrated.
Shijing GAO, Lele ZHANG, Jinxi LIU, Guoquan NIE, Weiqiu CHEN . Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter[J]. Applied Mathematics and Mechanics, 2024 , 45(4) : 649 -662 . DOI: 10.1007/s10483-024-3107-5
| 1 | HUTSON, A. R. Piezoelectricity and conductivity in ZnO and CdS. Physical Review Letters, 4 (10), 505- 507 (1960) |
| 2 | JAFFE, H., BERLINCOURT, D., KRUEGER, H. H. A., and SHIOZAWA, L. R. Piezoelectric properties of cadmium sulfide crystals. Proceedings of the 14th Annual Symposium on Frequency Control, Fort Monmouth, New Jersey, 19–23(1960) |
| 3 | HICKERNELL, F. S. The piezoelectric semiconductor and acoustoelectronic device development in the sixties. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (5), 737- 745 (2005) |
| 4 | HUTSON, A. R., and WHITE, D. L. Elastic wave propagation in piezoelectric semiconductors. Journal of Applied Physics, 33 (1), 40- 47 (1962) |
| 5 | WHITE, D. L. Amplification of ultrasonic waves in piezoelectric semiconductors. Journal of Applied Physics, 33, 2547- 2554 (1962) |
| 6 | WANG, Z. L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxidesfrom materials to nanodevices. Advanced Materials, 15 (5), 432- 436 (2003) |
| 7 | ROMANO, G., MANTINI, G., GARLO, A. D., D'AMICO, A., FALCONI, C., and WANG, Z. L. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology, 22 (46), 465401 (2011) |
| 8 | WANG, X. D., ZHOU, J., SONG, J. H., LIU, J., XU, N. S., and WANG, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6 (12), 2768- 2772 (2006) |
| 9 | BÜYÜKKÖSE, S., HERNÁNDEZ-MÍNGUEZ, A., VRATZOV, B., SOMASCHINI, C., GEELHAAR, L., RIECHERT, H., VAN DER WIEL, W. G., and SANTOS, P. V. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology, 25 (13), 135204 (2014) |
| 10 | YANG, Q., GUO, X., WANG, W. H., ZHANG, Y., XU, S., LIEN, D. H., and WANG, Z. L. Enhancing sensitivity of a single ZnO micronanowire photo detector by piezo-phototronic effect. ACS Nano, 4 (10), 6285- 6291 (2010) |
| 11 | CUI, Y., WEI, Q., PARK, H., and LIEBER, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 293 (5533), 1289- 1292 (2001) |
| 12 | JENKINS, K., NGUYEN, V., ZHU, R., and YANG, R. Piezotronic effect: an emerging mechanism for sensing applications. Sensors, 15 (9), 22914- 22940 (2015) |
| 13 | WA, NG, and Z., L. Piezotronics and Piezo-Phototronics, Springer, Berlin (2012) |
| 14 | YA, NG, and J., S. Analysis of Piezoelectric Semiconductor Structures, Springer Nature, witzerland (2020) |
| 15 | GAO, Y. F., and WANG, Z. L. Electrostatic potential in a bent piezoelectric nanowire, the fundamental theory of nanogenerator and nanopiezotronics. Nano Letters, 7 (8), 2499- 2505 (2007) |
| 16 | GAO, Y. F., and WANG, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Letters, 9 (3), 1103- 1110 (2009) |
| 17 | ARANEO, R., BINI, F., PEA, M., NOTARGIACOMO, A., RINALDI, A., LOVAT, G., and CELOZZI, S. Current-voltage characteristics of ZnO nanowires under uniaxial loading. IEEE Transactions on Nanotechnology, 13 (4), 724- 735 (2014) |
| 18 | ARANEO, R., BINI, F., PEA, M., NOTARGIACOMO, A., RINALDI, A., and CELOZZI, S. Impact of non-linear piezoelectricity on the piezotronic effect of ZnO nanowires. IEEE Transactions on Nanotechnology, 15 (3), 512- 520 (2016) |
| 19 | YANG, W. L., HU, Y. T., and PAN, E. N. Electronic band energy of a bent ZnO piezoelectric semiconductor nanowire. Applied Mathematics and Mechanics (English Edition), 41 (6), 833- 844 (2020) |
| 20 | YANG, G. Y., DU, J. K., WANG, J., and YANG, J. S. Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mechanica, 229 (11), 4663- 4676 (2018) |
| 21 | FANG, K., LI, N., LI, P., QIAN, Z. H., KOLESOV, V., and KUZNETSOVA, I. Effects of an attached functionally graded layer on the electromechanical behaviors of piezoelectric semiconductor fibers. Applied Mathematics and Mechanics (English Edition), 43 (9), 1367- 1380 (2022) |
| 22 | LI, P., JIN, F., and MA, J. X. One-dimensional dynamic equations of a piezoelectric semiconductor beam with a rectangular cross section and their application in static and dynamic characteristic analysis. Applied Mathematics and Mechanics (English Edition), 39 (5), 685- 702 (2018) |
| 23 | FAN, S. Q., and CHEN, Z. G. Electric potential and energy band in ZnO nanofiber tuned by local mechanical loading. Applied Mathematics and Mechanics (English Edition), 42 (6), 787- 804 (2021) |
| 24 | YANG, L., DU, J. K., and YANG, J. S. Interaction between bending and mobile charges in a piezoelectric semiconductor bimorph. Applied Mathematics and Mechanics (English Edition, 43 (8), 1171- 1186 (2022) |
| 25 | GUO, Z. W., CHEN, J. B., and ZHANG, G. Y. Exact solutions for plane stress problems of piezoelectric semiconductors: tuning free carrier motions by various mechanical loadings. European Journal of Mechanics A-Solids, 101, 105073 (2023) |
| 26 | LI, M. E., ZHANG, Q. Y., WANG, B. B., and ZHAO, M. H. Analysis of flexural vibrations of a piezoelectric semiconductor nanoplate driven by a time-harmonic force. Materials, 14 (14), 3926 (2021) |
| 27 | GUO, J. Y., NIE, G. Q., LIU, J. X., and ZHANG, L. L. Free vibration of a piezoelectric semiconductor plate. European Journal of Mechanics A-Solids, 95, 104647 (2022) |
| 28 | GUO, J. Y., NIE, G. Q., LIU, J. X., and ZHANG, L. L. Free vibration of a bi-layered composite plate of a piezoelectric semiconductor and a piezoelectric dielectric. AIP Advances, 13 (9), 095317 (2023) |
| 29 | ZHU, C. S., FANG, X. Q., and LIU, J. X. Nonlinear free vibration of piezoelectric semiconductor doubly-curved shells based on nonlinear drift-diffusion model. Applied Mathematics and Mechanics (English Edition), 44 (10), 1761- 1776 (2023) |
| 30 | WANG, G. L., LIU, J. X., LIU, X. L., FENG, W. J., and YANG, J. S. Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. Journal of Applied Physics, 124 (9), 094502 (2018) |
| 31 | LUO, Y. X., CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mechanica Solida Sinica, 31 (2), 127- 140 (2018) |
| 32 | GUO, M. K., LI, Y., QIN, G. S., and ZHAO, M. H. Nonlinear solutions of PN junctions of piezoelectric semiconductors. Acta Mechanica, 230 (5), 1825- 1841 (2019) |
| 33 | WEI, Z. B., WEI, P. J., XU, C. Y., and GUO, X. Influences of piezoelectric positive-negative junction on the multi-field coupled waves propagation in the piezoelectric semiconductor. Journal of the Acoustical Society of America, 152 (3), 1883- 1900 (2022) |
| 34 | LI, D. Z., LI, S. P., ZHANG, C. L., and CHEN, W. Q. Propagation characteristics of shear horizontal waves in piezoelectric semiconductor nanoplates incorporating surface effect. International Journal of Mechanical Sciences, 247, 108201 (2023) |
| 35 | GIANNAKOPOULOS, A. E., and SURESH, S. Theory of indentation of piezoelectric materials. Acta Materialia, 47 (7), 2153- 2164 (1999) |
| 36 | CHEN, W. Q., and DING, H. J. Indentation of a transversely isotropic piezoelectric half-space by a rigid sphere. Acta Mechanica Solida Sinica, 12 (2), 114- 120 (1999) |
| 37 | CHEN, W. Q., SHIOYA, T., and DING, H. J. The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space. Journal of Applied Mechanics, 66 (3), 764- 771 (1999) |
| 38 | CHEN, W. Q. On piezoelastic contact problem for a smooth punch. International Journal of Solids and Structures, 37 (16), 2331- 2340 (2000) |
| 39 | CHENG, G., and VENKATESH, T. A. Effect of electric fields on the nanoindentation response of piezoelectric materials. Scripta Materialia, 69 (9), 682- 685 (2013) |
| 40 | CHENG, G., and VENKATESH, T. A. Nanoindentation response of anisotropic piezoelectric materials. Philosophical Magazine Letters, 92 (6), 278- 287 (2012) |
| 41 | LIU, M., and YANG, F. Q. Finite element analysis of the spherical indentation of transversely isotropic piezoelectric materials. Modelling and Simulation in Materials Science and Engineering, 20 (4), 045019 (2012) |
| 42 | LIU, M., and YANG, F. Q. Finite element simulation of the effect of electric boundary conditions on the spherical indentation of transversely isotropic piezoelectric films. Smart Materials and Structures, 21 (10), 105020 (2012) |
| 43 | HU, Y. T., ZENG, Y., and YANG, J. S. A mode Ⅲ crack in a piezoelectric semiconductor of crystals with 6 mm symmetry. International Journal of Solids and Structures, 44, 3928- 3938 (2007) |
| 44 | WANG, J. H., CHEN, C. Q., and LU, T. J. Indentation responses of piezoelectric films. Journal of Mechanics and Physics of Solids, 56, 3331- 3351 (2008) |
| 45 | XIA, G. Z., HONG, W., and CHEN, W. Q. Indentation of pre-deformed compressible soft electroactive layer on substrate. International Journal of Mechanical Science, 238, 107834 (2023) |
| 46 | TIAN, R., NIE, G. Q., LIU, J. X., PAN, E. N., and WANG, Y. S. On Rayleigh waves in a piezoelectric semiconductor thin film over an elastic half-space. International Journal of Mechanical Sciences, 204, 106565 (2021) |
| 47 | ZHAO, Y. F., ZHOU, C. G., ZHAO, M. H., PAN, E. N., and FAN, C. Y. Penny-shaped cracks in three-dimensional piezoelectric semiconductors via Green's functions of extended displacement discontinuity. Journal of Intelligent Material Systems and Structures, 28, 1775- 1788 (2017) |
| 48 | AU, LD, and B., A. Acoustic Fields and Waves in Solids, John Wiley and Sons, New York (1973) |
| 49 | LI, R., REYES, P. I., RAGAVENDIRAN, S., SHEN, H., and LU, Y. C. Tunable surface acoustic wave device based on acoustoelectric interaction in ZnO/GaN heterostructures. Applied Physics Letters, 107, 073504 (2015) |
/
| 〈 |
|
〉 |