Articles

A vibration isolator with a controllable quasi-zero stiffness region based on nonlinear force design

Expand
  • 1 CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
    2 State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    3 State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
Huaxia DENG, E-mail: hxdeng@ustc.edu.cn

Received date: 2023-12-26

  Online published: 2024-07-31

Supported by

the National Natural Science Foundation of China(12372187);the National Natural Science Foundation of China(52321003);the National Natural Science Foundation of China(12302250);the Fundamental Research Funds for the Central Universities(KY2090000094);the Fundamental Research Funds for the Central Universities(WK2480000010);the Fellowship of China Postdoctoral Science Foundation(2024M753103);the Fellowship of China Postdoctoral Science Foundation(2023M733388);the University Synergy Innovation Program of Anhui Province(GXXT-2023-024);the CAS Talent Introduction Program(KJ2090007006);Project supported by the National Natural Science Foundation of China (Nos. 12372187, 52321003, and 12302250), the Fundamental Research Funds for the Central Universities (Nos. KY2090000094 and WK2480000010), the Fellowship of China Postdoctoral Science Foundation (Nos. 2024M753103 and 2023M733388), the University Synergy Innovation Program of Anhui Province (No. GXXT-2023-024), and the CAS Talent Introduction Program (No. KJ2090007006)

Copyright

Editorial Department of Applied Mathematics and Mechanics (English Edition), 2024,

Abstract

To achieve stability optimization in low-frequency vibration control for precision instruments, this paper presents a quasi-zero stiffness (QZS) vibration isolator with adjustable nonlinear stiffness. Additionally, the stress-magnetism coupling model is established through meticulous theoretical derivation. The controllable QZS interval is constructed via parameter design and magnetic control, effectively segregating the high static stiffness bearing section from the QZS vibration isolation section. Furthermore, a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform. Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7% compared with the operation outside this region, thereby significantly improving the low frequency performance of the QZS vibration isolator.

Cite this article

Xinyu LIAN, Bing LIU, Huaxia DENG, Xinglong GONG . A vibration isolator with a controllable quasi-zero stiffness region based on nonlinear force design[J]. Applied Mathematics and Mechanics, 2024 , 45(8) : 1279 -1294 . DOI: 10.1007/s10483-024-3137-8

References

1 CHEN, S. B., XUAN, M., XIN, J., LIU, Y., GU, S., LI, J., and ZHANG, L. Design and experiment of dual micro-vibration isolation system for optical satellite flywheel. International Journal of Mechanical Sciences, 179, 105592 (2020)
2 YUE, R. G., WANG, H. M., JIN, T., GAO, Y. T., SUN, X. F., YAN, T. F., ZANG, J., YIN, K., and WANG, S. T. Image motion measurement and image restoration system based on an inertial reference laser. Sensors, 21, 3309 (2021)
3 DENG, T. C., WEN, G. L., DING, H., LU, Z. Q., and CHEN, L. Q. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mechanical Systems and Signal Processing, 145, 106967 (2020)
4 PREUMONT, A., HORODINCA, M., ROMANESCU, I., DE MARNEFFE, B., AVRAAM, M., DERAEMAEKER, A., BOSSENS, F., and ABU HANIEH, A. A six-axis single-stage active vibration isolator based on Stewart platform. Journal of Sound and Vibration, 300, 644- 661 (2007)
5 YANG, X. L., WU, H. T., LI, Y., and CHEN, B. Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart platform. Mechanism and Machine Theory, 117, 244- 252 (2017)
6 WANG, X., WU, H. M., and YANG, B. T. Micro-vibration suppressing using electromagnetic absorber and magnetostrictive isolator combined platform. Mechanical Systems and Signal Processing, 139, 106606 (2020)
7 ZHANG, Z., AGLIETTI, G. S., and ZHOU, W. Y. Microvibrations induced by a cantilevered wheel assembly with a soft-suspension system. AIAA Journal, 49 (5), 1067- 1079 (2011)
8 YU, T. H., ZHANG, C., HUANG, Z. Q., HUANG, W. Y., WANG, S. Y., ZHONG, G. Q., and OU, D. T. Experimental and numerical studies of a novel three-dimensional isolation device incorporating disc springs with U-shaped dampers. Soil Dynamics and Earthquake Engineering, 174, 108164 (2023)
9 VAILLON, L., SANCTORUM, B., SPERANDEI, J., DEFENDINI, A., GRISERI, G., VON ALBERTI, M., and SPANOUDAKIS, P. Flight prototyping of active control of vibration & very high accuracy pointing systems. Proceedings of the 5th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, European Space Agency, Italy, 599–602 (2003)
10 LIU, J. G., LI, Y. M., ZHANG, Y., GAO, Q., and ZUO, B. Dynamics and control of a parallel mechanism for active vibration isolation in space station. Nonlinear Dynamics, 76, 1737- 1751 (2014)
11 ZHAO, W., LI, B., LIU, P., and LIU, K. F. Semi-active control for a multi-dimensional vibration isolator with parallel mechanism. Journal of Vibration and Control, 19 (6), 879- 888 (2013)
12 HAO, Z. F., and CAO, Q. J. A novel dynamical model for GVT nonlinear supporting system with stable-quasi-zero-stiffness. Journal of Theoretical and Applied Mechanics, 52 (1), 199- 213 (2014)
13 HAO, Z. F., and CAO, Q. J. The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. Journal of Sound and Vibration, 340, 61- 79 (2015)
14 XIA, S. H., WANG, N. F., CHEN, B. C., ZHANG, X. M., and CHEN, W. Nonlinear stiffness mechanism designed by topology optimization reduces backpack vibration. International Journal of Mechanical Sciences, 252, 108345 (2023)
15 LI, H., BI, K. M., and HAO, H. Effect of negative stiffness nonlinearity on the vibration control effectiveness of tuned negative stiffness inerter damper. Engineering Structures, 293, 116641 (2023)
16 YU, C. Y., JIANG, Q. B., FU, Q. D., YU, K. F., ZHANG, J. R., and ZHANG, N. The X-shaped structure with nonlinear positive stiffness compensation for low-frequency vibration isolation. International Journal of Mechanical Sciences, 259, 108598 (2023)
17 STABILE, A., AGLIETTI, G., RICHARDSON, G., and SMET, G. A 2-collinear-DOF strut with embedded negative-resistance electromagnetic shunt dampers for spacecraft micro-vibration. Smart Materials and Structures, 26 (4), 045031 (2017)
18 SUN, X. Q., YANG, B. T., ZHAO, L., and SUN, X. F. Optimal design and experimental analyses of a new micro-vibration control payload-platform. Journal of Sound and Vibration, 374, 43- 60 (2016)
19 ZHOU, N., and LIU, K. A tunable high-static-low-dynamic stiffness vibration isolator. Journal of Sound and Vibration, 329 (9), 1254- 1273 (2010)
20 SHAW, A. D., NEILD, S. A., and WAGG, D. J. Dynamic analysis of high static low dynamic stiffness vibration isolation mounts. Journal of Sound and Vibration, 332 (6), 1437- 1455 (2013)
21 LIU, T., BI, S. S., YAO, Y. B., DONG, Z. H., YANG, Q. Z., and LIU, L. Research on zero-stiffness flexure hinge (ZSFH) based on spring four-bar linkage (4BSL). Mechanism and Machine Theory, 143, 103633 (2020)
22 DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675- 688 (2019)
23 WANG, Q., ZHOU, J. X., XU, D. L., and OUYANG, H. J. Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mechanical Systems and Signal Processing, 139, 106633 (2020)
24 MAO, X. Y., YIN, M. M., DING, H., GENG, X. F., SHEN, Y. J., and CHEN, L. Q. Modeling, analysis, and simulation of X-shape quasi-zero-stiffness-roller vibration isolators. Applied Mathematics and Mechanics (English Edition), 43 (7), 1027- 1044 (2022)
25 CAREELLA, A., BRENNAN, M. J., KOVACIC, I., and WATERS, T. P. On the force transmissibility of a vibration isolator with quasi-zero-stiffness. Journal of Sound and Vibration, 322 (4), 707- 717 (2009)
26 LU, J. J., YAN, G., QI, W. H., YAN, H., LIU, F. R., ZHAO, T. Y., and ZHANG, W. M. Integrated vibration isolation and actuation via dual nonlinear stiffness regulation. International Journal of Mechanical Sciences, 263, 108760 (2023)
27 LIU, C., ZHANG, W., YU, K., LIU, T., and ZHENG, Y. Compliant quasi-zero-stiffness isolator for low-frequency torsional vibration isolation. Mechanism and Machine Theory, 181, 105213 (2023)
28 MOLYNEUX, W. G. Supports for Vibration Isolation, Aeronautical Research Council, Great Britain (1957)
29 ALABUZHEV, P. M. Vibration Protection and Measuring Systems with Quasi-Zero Stiffness, CRC Press, U. S. A. (1989)
30 KOVACIC, I., BRENNAN, M. J., and WATERS, T. P. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. Journal of Sound and Vibration, 315 (3), 700- 711 (2008)
31 CARRELLA, A., FRISWELL, M. I., ZOTOV, A., EWINS, D. J., and TICHONOV, A. Using nonlinear springs to reduce the whirling of a rotating shaft. Mechanical Systems and Signal Processing, 23 (7), 2228- 2235 (2009)
32 LAN, C. C., YANG, S. A., and WU, Y. S. Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. Journal of Sound and Vibration, 333 (20), 4843- 4858 (2014)
33 HUANG, X., LIU, X., SUN, J., ZHANG, Z., and HUA, H. Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. Journal of Sound and Vibration, 333 (4), 1132- 1148 (2014)
34 HAO, Z., CAO, Q., and WIERCIGROCH, M. Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dynamics, 87, 987- 1014 (2017)
35 ARAKI, Y., KIMURA, K., ASAI, T., MASUI, T., OMORI, T., and KAINUMA, R. Integrated mechanical and material design of quasi-zero-stiffness vibration isolator with superelastic Cu-Al-Mn shape memory alloy bars. Journal of Sound and Vibration, 358, 74- 83 (2015)
36 DING, H., and CHEN, L. Q. Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dynamics, 95 (3), 2367- 2382 (2019)
37 HUANG, X., LIU, X., SUN, J., ZHANG, Z., and HUA, H. Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dynamics, 76 (2), 1157- 1167 (2014)
38 TAGHIPOUR, J., DARDEL, M., and PASHAEI, M. H. Vibration mitigation of a nonlinear rotor system with linear and nonlinear vibration absorbers. Mechanism and Machine Theory, 128, 586- 615 (2018)
39 LI, M., LI, J. Y., FU, K. J., YE, A. N., XIAO, Y., MA, X. F., REN, G. X., and ZHAO, Z. H. Harnessing noncircular gears to achieve nonlinear passive springs. Mechanism and Machine Theory, 140, 434- 445 (2019)
40 TUO, J., DENG, Z., HUANG, W., and ZHANG, H. A six degree of freedom passive vibration isolator with quasi-zero-stiffness-based supporting. Journal of Low Frequency Noise, Vibration and Active Control, 37 (2), 279- 294 (2018)
41 IBRAHIM, R. A. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314, 371- 452 (2008)
42 SHAW, A. D., NEILD, S. A., and FRISWELL, M. I. Relieving the effect of static load errors in nonlinear vibration isolation mounts through stiffness asymmetries. Journal of Sound and Vibration, 339, 84- 98 (2015)
43 HAO, Z., CAO, Q., and WIERCIGROCH, M. Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dynamics, 86, 2129- 2144 (2016)
44 LIU, X. C., DING, H., GENG, X. F., WEI, K. X., LAI, S. K., and CHEN, L. Q. A magnetic nonlinear energy sink with quasi-zero stiffness characteristics. Nonlinear Dynamics, 112 (8), 5895- 5918 (2024)
45 SHAN, S. C., KANG, S. H., RANEY, J. R., WANG, P., FANG, L. C., CANDIDO, F., LEWIS, J. A., and BERTOLDI, K. Multistable architected materials for trapping elastic strain energy. Advanced Materials, 27 (29), 4296- 4301 (2015)
46 QIU, J., LANG, J. H., and SLOCUM, A. H. A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 13 (2), 137- 146 (2004)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals