Space and time estimates of second gradient thermal problems

  • J. R. FERNáNDEZ ,
  • V. PATA ,
  • R. QUINTANILLA
Expand
  • 1.Departamento de Matemática Aplicada I, Universidade de Vigo, ETSI Telecomunicación Campus As Lagoas Marcosende s/n, Vigo 36310, Spain
    2.Dipartamento di Matematica, Politecnico di Milano Piazza Leonardo da Vinci 32, Milano 20133, Italy
    3.Departamento de Matemáticas, E.S.E.I.A.A.T.-U.P.C., Terrassa 08222, Barcelona, Spain
J. R. FERNÁNDEZ, E-mail: jose.fernandez@uvigo.es

Received date: 2025-02-14

  Revised date: 2025-05-09

  Online published: 2025-06-30

Copyright

© Shanghai University 2025

Abstract

We consider the space and time decays of certain problems within the second gradient thermal law. Notably, for this thermal theory, the exponential time decay is precluded. First, the time estimates of polynomial type are obtained for both the thermal equation and the one-dimensional thermoelastic system, where the impossibility of localization with respect to time is also established. Then, the space estimates are deduced for the multidimensional thermoelastic problem, which allow to show the exponential decay of the energy.

Cite this article

J. R. FERNáNDEZ , V. PATA , R. QUINTANILLA . Space and time estimates of second gradient thermal problems[J]. Applied Mathematics and Mechanics, 2025 , 46(7) : 1403 -1416 . DOI: 10.1007/s10483-025-3266-9

References

[1] HETNARSKI, R. B. and IGNACZAK, J. Generalized thermoelasticity. Journal of Thermal Stresses, 22, 451–470 (1999)
[2] HETNARSKI, R. B. and IGNACZAK, J. Nonclassical dynamical thermoelasticity. International Journal of Solids and Structures, 37(1-2), 215–224 (2000)
[3] SOKOLNIKOFF, R. M. and REDHEFFER, I. S. Mathematics of Physics and Modern Engineering, Vol. 194, McGraw-Hill College, New York/Toronto/London (1966)
[4] FOREST, S. and AMESTOY, M. Hypertemperature in thermoelastic solids. Comptes Rendues Mathématiques, 336, 347 (2008)
[5] LORD, H. W. and SHULMAN, Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15(5), 299–309 (1967)
[6] GREEN, A. E. and LIDSAY, K. A. Thermoelasticity. Journal of Elasticity, 2, 1–7 (1972)
[7] GREEN, A. G. and NAGHDI, P. M. A unified procedure for construction of theories of deformable media. I. classical continuum physics. Proceedings of the Royal Society of London A, 448, 335–356 (1995)
[8] GREEN, A. G. and NAGHDI, P. M. A unified procedure for construction of theories of deformable media, II. generalized continua. Proceedings of the Royal Society of London A, 448, 357–377 (1995)
[9] GREEN, A. G. and NAGHDI, P. M. A unified procedure for construction of theories of deformable media, III. mixtures of interacting continua. Proceedings of the Royal Society of London A, 448, 379–388 (1995)
[10] QUINTANILLA, R. Moore-Gibson-Thompson thermoelasticity. Mathematics and Mechanics of Solids, 24, 4020–4031 (2019)
[11] IGNACZAK, J. and OSTOJA-STARZEWSKI, M. Thermoelasticity with Finite Wave Speeds, Oxford Mathematical Monographs, Oxford (2010)
[12] STRAUGHAN, B. Heat Waves, Applied Mathematical Sciences, Vol. 177, Springer-Verlag, Berlin (2011)
[13] FABRIZIO, M., FRANCHI, F., and NIBBI, R. Second gradient Green-Nagdhi type thermo-elasticity and viscoelasticity. Mechanics Research Communications, 126, 104014 (2022)
[14] IE?AN, D. Thermal stresses that depend on temperature gradients. Zeitschrift für angewandte Mathematik und Physik, 74, 138 (2023)
[15] IE?AN, D. Second gradient theory of thermopiezoelectricity. Acta Mechanica, 235, 5379–5391 (2024)
[16] IE?AN, D., MAGA?A, A., and QUINTANILLA, R. A second gradient theory of thermoviscoelasticity. Journal of Thermal Stresses, 47, 1145–1158 (2024)
[17] IE?AN, D. and QUINTANILLA, R. A second gradient theory of thermoelasticity. Journal of Elasticity, 154, 629–643 (2023)
[18] IE?AN, D. and QUINTANILLA, R. Second gradient thermoelasticity with microtemperatures. Electronic Research Archive, 33, 537–555 (2025)
[19] BAZARRA, N., FERNáNDEZ, J. R., PATA, V., and QUINTANILLA, R. Analysis of two thermoelastic problems within the second gradient theory. Journal of Thermal Stresses (2025) https://doi.org/10.1080/01495739.2025.2485472
[20] BORICHEV, A. and TOMILOV, Y. Optimal polynomial decay of function semigroups. Mathemastichen Annalen, 347, 455–478 (2009)
[21] DELL'ORO, F. and PATA, V. Second order linear evolution equations with general dissipation. Applied Mathematics and Optimization, 83, 1877–1917 (2021)
[22] DAFERMOS, C. M. Contraction semigroups and trend to equilibrium in continuum mechanics. Lecture Notes in Mathematics, Vol. 503, Springer, Berlin, 295–306 (1976)
[23] BERENSTEIN, C. A. An inverse spectral theorem and its relation to the Pompeiu problem. Journal d'Analyse Mathématique, 37, 128–144 (1980)
[24] HORGAN, C. O. and WHLEER, L. T. Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow. SIAM Journal on Applied Mathematics, 35, 97–116 (1978)
[25] VAFEADES, P. and HORGAN, C. O. Exponential decay estimates for solutions of the von Kármán equations on a semi-infinite strip. Archive for Rational Mechanics and Analysis, 104, 1–25 (1988)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals