Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (6): 705-714 .doi: https://doi.org/10.1007/s10483-008-0602-3

• Articles • 上一篇    下一篇

二维矩形域内Stokes流问题的辛解析和数值方法

徐新生,王尕平,孙发明   

  1. 大连理工大学工程力学系工业装备结构分析国家重点实验室,辽宁 大连 116025
  • 收稿日期:2008-02-04 修回日期:2008-04-17 出版日期:2008-06-18 发布日期:2008-06-18
  • 通讯作者: 徐新生

Analytical and numerical methods of symplectic system for Stokes flow

XU Xin-sheng, WANG Ga-ping, SUN Fa-ming   

  1. State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P. R. China
  • Received:2008-02-04 Revised:2008-04-17 Online:2008-06-18 Published:2008-06-18
  • Contact: XU Xin-sheng

摘要: 给出了一种新的解析求解二维矩形域中的Stokes流问题的方法-辛体系方法(Hamilton体系方法)。在辛体系下,基本问题归结为本征值和本征解的问题。由于辛本征解之间存在辛正交共轭关系,问题的解和边界条件均可以由本征解描述和表示。利用辛本征解空间的完备性,建立一套封闭的求解问题方法。研究结果表明零本征值本征解描述了基本流动,而非零本征值本征解则表示问题的局部效应。数值结果给出了几种有代表性的流动情况,显示了该求解方法对求解许多问题的有效性。同时,这种方法也为研究其他问题提供了一条思路。

Abstract: In this paper, a new analytical method of symplectic system, Hamiltonian system, is introduced for solving the problem of the Stokes flow in a two-dimensional rectangular domain. In the system, the fundamental problem is reduced to an eigenvalue and eigensolution problem. The solution and boundary conditions can be expanded by eigensolutions using adjoint
relationships of the symplectic ortho-normalization between the eigensolutions. A closed method of the symplectic eigensolution is
presented based on completeness of the symplectic eigensolution
space. The results show that fundamental flows can be described by
zero eigenvalue eigensolutions, and local effects by nonzero eigenvalue eigensolutions. Numerical examples give various flows in a rectangular domain and show effectiveness of the method for solving a variety of problems. Meanwhile, the method can be used in solving other problems.

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals