Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (8): 1085-1092 .doi: https://doi.org/10.1007/s10483-008-0812-y

• Articles • 上一篇    下一篇

微重力环境下充液球腔非线性耦合动力学研究

岳宝增   

  1. 北京理工大学 理学院 力学系,北京 100081
  • 收稿日期:2007-06-21 修回日期:2008-07-03 出版日期:2008-08-18 发布日期:2008-08-18
  • 通讯作者: 岳宝增

Nonlinear coupled dynamics of liquid-filled spherical container in microgravity

YUE Bao-zeng   

  1. Department of Mechanics, School of Science, Beijing Institute of Technology, Beijing 100081, P. R. China
  • Received:2007-06-21 Revised:2008-07-03 Online:2008-08-18 Published:2008-08-18
  • Contact: YUE Bao-zeng

摘要: 采用球坐标系描述球腔中的液体动力学特性并建立一种轴对称贮腔类液刚耦合系统动力学模型.采用模态展开方法分析了微重环境下球形贮箱中的液体晃动问题,给出了球形贮箱内液体晃动速度势函数和波函数的Gauss超几何级数解析表达式.采用变分原理推导了系统动力学系模型,利用Galerkin方法对变分方程进行特征频率分析,运用Lagrange方法及非线性动力学方法导出了微重力环境下贮箱中液体与航天器结构耦合的动力学方程组,并对该方程组进行了数值计算,绘出了非线性耦合充液系统自由度随时间的变化历程.

关键词: 微重力, 充液系统, 耦合动力学, 液体晃动, 航天器

Abstract: Nonlinear coupled dynamics of a liquid-filled spherical container in microgravity are investigated. The governing equations of the low-gravity liquid sloshing in a convex axisymmetrical container subjected to lateral excitation is obtained by the variational principle and solved with a modal analysis method. The variational formulas are transformed into a frequency equation in the form of a standard eigenvalue problem by the Galerkin method, in which admissible functions for the velocity potential and the liquid free surface displacement are determined analytically in terms of the Gaussian hypergeometric series. The coupled dynamic equations of the liquid-filled container are derived using the Lagrange's method and are numerically solved. The time histories of the modal solutions are obtained in numerical simulations.

Key words: microgravity, liquid-filled system, coupled dynamics, liquid sloshing, spacecraft

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals