[1] Arnold, L. A formula connecting sample and moment stability of a linear stochastic system. SIAMJournal of Applied Mathematics, 44(4), 793-802 (1984)
[2] Arnold, L. Random Dynamical Systems, Springer-Verlag, Berlin (1998)
[3] Khasminkii, R. and Moshchuk, N. Moment Lyapunov exponent and stability index for linearconservative system with small random perturbation. SIAM Journal of Applied Mathematics,58(1), 245-256 (1998)
[4] Namachchivaya, N. S. and van Roessel, H. J. Moment Lyapunov exponent and stochastic stabilityof two coupled oscillators driven by real noise. ASME Journal of Applied Mechanics, 68(6), 903-914 (2001)
[5] Liu, X. B. and Liew, K. M. On the stability properties of a van der Pol-Duffing oscillator that isdriven by a real noise. Journal of Sound and Vibration, 285(1-2), 27-49 (2005)
[6] Xie, W. C. Moment Lyapunov exponents of a two-dimensional system under bounded noise parametricexcitation. Journal of Sound and Vibration, 263(3), 593-616 (2003)
[7] Xie, W. C. and So, R. M. C. Parametric resonance of a two-dimensional system under boundednoise excitation. Nonlinear Dynamics, 36(2-4), 437-453 (2004)
[8] Xie, W. C. Moment Lyapunov exponents of a two-dimensional system under both harmonic andwhite noise parametric excitations. Journal of Sound and Vibration, 289(1-2), 171-191 (2006)
[9] Xie, W. C. Moment Lyapunov exponents of a two-dimensional system under combined harmonicand real noise excitations. Journal of Sound and Vibration, 303(1-2), 109-134 (2007)
[10] Zhu, J. Y., Xie, W. C., So. R. M. C., and Wang, X. Q. Parametric resonance of a two degrees-offreedomsystem induced by bounded noise. ASME Journal of Applied Mechanics, 76(4), 041007(2009)
[11] Guckenheimer, G. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcationsof Vector Fields, Springer-Verlag, New York (1983)
[12] Stratonovich, R. L. Topics in the Theory of Random Noise, Vol. , Gordon and Breach, NewYork (1967)
[13] Lin, Y. K. and Cai, G. Q. Probabilistic Structural Dynamics, Advanced Theory and Applications,McGraw-Hill, New York (1995)
[14] Ariaratnam, S. T. Stochastic stability of viscoelastic systems under bounded noise excitation.IUTAM Symposium on Advances in Nonlinear Stochastic Mechnicas (eds. Naess, A. and Krenk,S.), Kluwer, Dordrecht, 11-18 (1996)
[15] Zauderer, E. Partial Differential Equations of Applied Mathematics, 2nd ed., Wiley-InterScience,New York (1989)
|