[1] Misra, J. C., Sinha, A., and Shit, G. C. Flow of a biomagnetic viscoelastic fluid: application to estimationof blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure forcancer treatment. Appl. Math. Mech. -Engl. Ed., 31(11), 1405-1420 (2010) DOI 10.1007/s10483-010-1371-6
[2] Misra, J. C., Sinha, A., and Shit, G. C. Theoretical analysis of blood flow through an arterialsegment having multiple stenoses. J. Mech. Med. Biol., 8, 265-279 (2008)
[3] Misra, J. C. and Kar, B. K. Momentum integral method for studying flow characteristics of bloodthrough a stenosed vessel. Biorheology, 26, 23-25 (1989)
[4] Misra, J. C., Pal, B., and Gupta, A. S. Hydrodynamic flow of a second-grade fluid in a channel—some applications to physiological systems. Math. Model. Meth. Appl. Sci., 8, 1323-1342 (1998)
[5] Misra, J. C., Patra, M. K., and Misra, S. C. A non-Newtonian fluid model for blood flow througharteries under the stenotic conditions. J. Biomech., 26, 1129-1141 (1993)
[6] Misra, J. C. and Roychoudhuri, K. A study on the stability of blood vessels. Rheol. Acta., 21,341-346 (1982)
[7] Misra, J. C. and Roychoudhuri, K. Effect of initial stresses on the wave propagation in arteries.J. Math. Biol., 18, 53-67 (1983)
[8] Misra, J. C. and Shit, G. C. Blood flow through arteries in a pathological state. Int. J. Eng. Sci.,44, 662-671 (2006)
[9] Misra, J. C. and Shit, G. C. Role of slip velocity in blood flow through stenosed arteries: anon-Newtonian model. J. Mech. Med. Biol., 7, 337-353 (2007)
[10] Misra, J. C. and Shit, G. C. Biomagnetic viscoelastic fluid flow over a stretching sheet. Appl.Math. Comput., 210, 350-361 (2009)
[11] Misra, J. C., Shit, G. C., and Rath, H. J. Flow and heat transfer of an MHD viscoelastic fluid ina channel with stretching walls: some applications to hemodynamics. Comput. Fluids, 37, 1-11(2008)
[12] Misra, J. C. and Singh, S. I. A study on the nonlinear flow of blood through arteries. Bull. Math.Biol., 49, 257-277 (1987)
[13] Misra, J. C. and Shit, G. C. Flow of a biomagnetic viscoelastic fluid in a channel with stretchingwalls. J. Appl. Mech., 76, 061006-061014 (2009)
[14] Misra, J. C., Shit, G. C., Chandra, S., and Kundu, P. K. Electro-osmotic flow of a viscoelastic fluidin a channel: application to physiological fluid mechanics. Appl. Math. Comput., 217, 7932-7939(2011)
[15] Misra, J. C. and Chakravarty, S. Dynamic response of arterial walls in vivo. J. Biomech., 15,317-324 (1982)
[16] Misra, J. C. and Singh, S. I. Pulse wave velocities in the aorta. Bull. Math. Biol., 46, 103-114(1984)
[17] Mortimer, R. G. and Eyring, H. Elementary transition state theory of the Soret and Dufour effects.Proc. Nat. Acad. Sci., 77, 1728-1731 (1980)
[18] Ramamurthy, G. and Shanker, B. Magnetohydrodynamic effects on blood flow through a porouschannel. Med. Biol. Eng. Comput., 32, 655-659 (1994)
[19] Mustapha, M., Amin, N., Chakravarty, S., and Mandal, P. K. Unsteady magnetohydrodynamicblood flow through irregular multistenosed arteries. Comput. Biol. Med., 39, 896-906 (2009)
[20] Mekheimer, K. S. Peristaltic flow of blood under effect of magnetic field in a non-uniform channel.Appl. Math. Comput., 153, 763-777 (2004)
[21] Vardanyan, V. A. Effect of magnetic field on blood flow. Biofizika, 18, 491-496 (1973)
[22] Barnothy, M. F. Biological Effects of Magnetic Fields, Plenum Press, New York, 1964-1969 (1964)
[23] Ritman, E. L. and Lerman, A. Role of vasa vasorum in arterial disease: a re-emerging factor.Current Cardiology Reviews, 3, 43-55 (2007)
[24] Khaled, A. R. A. and Vafai, K. The role of porous media in modeling flow and heat transfer inbiological tissues. Int. J. Heat Mass Trans., 46, 4989-5003 (2003)
[25] Jha, B. K. and Prasad, R. Effects of applied magnetic field on transient free convective flow in avertical channel. J. Math. Phys. Sci., 26, 1-8 (1992)
[26] Lai, F. C. Coupled heat and mass transfer by mixed convection from a vertical plate in a saturatedporous medium. Int. Comm. Heat Mass Trans., 18, 93-106 (1991)
[27] Singh, A. K., Singh, A. K., and Singh, N. P. Heat and mass transfer in MHD flow of a viscousfluid past a vertical plate under oscillatory suction velocity. Ind. J. Pure Appl. Math., 34, 429-442(2003)
[28] Leitao, A., Li, M., and Rodrigues, A. The role of intraparticle convection in protein absorption byliquid chromatography using porous 20 HQ/M articles. Biochem. Eng. J., 11(2-3), 33-48 (2002)
[29] Darcy, H. R. P. G. Les Fontaines Publiques de la Voll de Dijan, Vector Dalmout, Paris (1856)
[30] Preziosi, L. and Farina, A. On Darcy's law for growing porous media. Int. J. Nonlin. Mech., 37,485-491 (2002)
[31] Dash, R. K., Mehta, K. N., and Jayaraman, G. Casson fluid flow in a pipe filled with homogeneousporous medium. Int. J. Eng. Sci., 34, 1146-1156 (1996)
[32] Acharya, M., Dash, G. C., and Singh, L. P. Magnetic field effects on the free convection and masstransfer flow through porous medium with constant suction and constant heat flux. Ind. J. PureAppl. Math., 31(1), 1-18 (2000)
[33] Kumar, A., Chand, B., and Kaushik, A. On unsteady oscillatory laminar free convection flowof an electrically conducting fluid through porous medium along a porous hot plate with timedependent suction in the presence of heat source/sink. J. Acad. Math., 24, 339-354 (2002)
[34] Takhar, H. S., Chamkha, A. J., and Nath, G. Unsteady laminar MHD flow and heat transfer in thestagnation region of an impulsively spinning and translating sphere in the presence of buoyancyforces. Heat Mass Trans., 37, 397-402 (2001)
[35] Prasad, K. V. and Vajravelu, K. Heat transfer in the MHD flow of a power law fluid over anon-isothermal stretching sheet. Int. J. Heat Mass Trans., 52, 4956-4965 (2009)
[36] Ganesan, P. and Palani, G. Finite difference analysis of unsteady natural convection MHD flowpast an inclined plate with variable surface heat and mass flux. Int. J. Heat Mass Trans., 47,4449-4457 (2004)
[37] Pal, B., Misra, J. C., and Gupta, A. S. Steady hydromagnetic flow in a slowly varying channel.Proc. Natl. Inst. Sci. Ind. Part A, 66, 247-262 (1996)
[38] Misra, J. C., Pal, B., Pal, A., and Gupta, A. S. Oscillatory entry flow in a plane channel withpulsating walls. Int. J. Nonlin. Mech., 36, 731-741 (2001)
[39] Misra, J. C. and Shit, G. C. Effect of magnetic field on blood flow through an artery: a numericalmodel. J. Comput. Tech., 12, 3-16 (2007)
[40] Yin, F. and Fung, Y. C. Peristaltic waves in circular cylindrical tubes. J. Appl. Mech., 36, 679-687(1969)
[41] Shapiro, A. H., Jaffrin, M. Y., and Weinberg, S. L. Peristaltic pumping with long wavelength atlow Reynolds number. J. Fluid Mech., 37, 799-825 (1969)
[42] Takabatake, S., Ayukawa, K., and Mori, A. Peristaltic pumping in circular cylindrical tubes: anumerical study of fluid transport and its efficiency. J. Fluid Mech., 193, 267-283 (1988)
[43] Olugu, A. and Amos, E. Modeling pulsatile blood flow within a homogeneous porous bed in thepresence of a uniform magnetic field and time dependent suction. Int. Comm. Heat Mass Trans.,34, 989-995 (2007)
[44] Brewster, M. Q. Thermal Radiative Transfer Properties, John Wiley and Sons, New York (1992)
[45] Olugu, A. and Amos, E. Asymptotic approximations for the flow field in a free convective flow ofa non-Newtonian fluid past a vertical porous plate. Int. Comm. Heat Mass Trans., 32, 974-982(2005)
[46] Chaudhary, R. C. and Jha, A. K. Effect of chemical reactions on MHD micropolar fluid flow pasta vertical plate in slip-flow regime. Appl. Math. Mech. -Engl. Ed., 29(9), 1179-1194 (2008) DOI10.1007/s10483-008-0907-x
|