[1] Sakiadis, B. C. Boundary layer behavior on continuous solid surface, II: the boundary layer on acontinuous flat surface. AIChE J., 7, 221-225 (1961)
[2] Tsou, F. K., Sparrow, E. M., and Goldstein, K. J. Flow and heat transfer in the boundary layeron a continuous moving surface. Int. J. Heat Mass Transfer, 10, 219-235 (1967)
[3] Erickson, L. E., Fan, L. T., and Fox, V. G. Heat and mass transfer on a moving continuous flatplate with suction or blowing. Ind. Eng. Chem. Fund., 5, 19-25 (1966)
[4] Griffin, J. F. and Thorne, J. L. On the thermal boundary layer growth on continuous movingbelts. AIChE J., 13, 1210-1211 (1967)
[5] Moutsoglou, A. and Chen, T. S. Buoyancy effects in boundary layers on inclined continuous movingsheets. J. Heat Transfer, 102, 171-173 (1980)
[6] Jeng, D. R., Chang, T. C. A., and De-Witt, K. J. Momentum and heat transfer on a continuousmoving surface. J. Heat Transfer, 108, 532-537 (1986)
[7] Takhar, H. S., Chamkha, A. J., and Nath, G. Effect of buoyancy forces on the flow and heattransfer over a continuous moving vertical or inclined surface. Int. J. Therm. Sci., 40, 825-833(2001)
[8] Mahmoud, M. A. A. Variable viscosity effects on hydromagnetic boundary layer flow along acontinuously moving vertical plate in the presence of radiation. Appl. Math. Sci., 1, 799-814(2007)
[9] Mahmoud, M. A. A. and Megahed, A. M. On steady hydromagnetic boundary-layer flow of a non-Newtonian power-law fluid over a continuously moving surface with suction. Chem. Eng. Comm.,194, 1457-1469 (2007)
[10] Mahmoud, M. A. A. and Megahed, A. M. Effects of viscous dissipation and heat generation(absorption) in a thermal boundary layer of a non-Newtonian fluid over a continuously movingpermeable flat plate. J. Appl. Mech. Tech. Phys., 50, 819-825 (2009)
[11] Bar-Cohen, A., Sherwood, G., Hodes, M., and Solbreken, G. L. Gas-assisted evaporative coolingof high density electronic modules. IEEE Trans. CPMT., Part A, 18, 502-509 (1995)
[12] Chun, K. R. and Seban, R. A. Heat transfer to evaporating liquid films. ASME J. Heat Transfer,93, 391-396 (1971)
[13] Killion, J. D. and Garimella, S. Simulation of pendant droplets and falling films in horizontal tubeabsorbers. ASME J. Heat Transfer, 126, 1003-1013 (2004)
[14] Rabani, E., Rechman, D. R., Gelssler, P. L., and Brus, L. E. Drying mediated self-assembly ofnano-particles. nature, 426, 271-274 (2003)
[15] Calvert, P. Ink-jet printing for materials and devices. Chem. Mater., 13, 3299-3305 (2001)
[16] Wang, C. Liquid film on an unsteady stretching surface. Quarterly of Applied Mathematics, 48,601-610 (1990)
[17] Andersson, H. I., Aarseth, J. B., and Dandapat, B. S. Heat transfer in a liquid film on an unsteadystretching surface. Int. J. Heat Mass Transfer, 43, 69-74 (2000)
[18] Dandapat, B. S., Santra, B., and Andersson, H. I. Thermocapillarity in a liquid film on an unsteadystretching surface. Int. J. Heat Mass Transfer, 46, 3009-3015 (2003)
[19] Chen, C. H. Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over anunsteady stretching sheet. J. Non-Newtonian Fluid Mech., 135, 128-135 (2006)
[20] Wang, C. and Pop, I. Analysis of the flow of a power-law fluid film on an unsteady stretchingsurface by means of homotopy analysis method. J. Non-Newtonian Fluid Mech., 138, 161-172(2006)
[21] Abbas, Z., Hayat, T., Sajid, M., and Asghar, S. Unsteady flow of a second grade fluid film overan unsteady stretching sheet. Mathematical and Computer Modelling, 48, 518-526 (2008)
[22] Abel, M. S., Mahesha, N., and Tawade, J. Heat transfer in a liquid film over an unsteady stretchingsurface with viscous dissipation in presence of external magnetic field. Applied MathematicalModelling, 33, 3430-3441 (2009)
[23] Santra, B. and Dandapat, B. S. Unsteady thin-film flow over a heated stretching sheet. Int. J.Heat Mass Transfer, 52, 1965-1970 (2009)
[24] Noor, N. F. M., Abdulaziz, O., and Hashim, I. MHD flow and heat transfer in a thin liquid filmon an unsteady stretching sheet by the homotopy analysis method. Int. J. Numer. Meth. Fluids,63, 357-373 (2010)
[25] Siddiqui, A. M., Mahmood, R., and Ghori, Q. K. Homotopy perturbation method for thin filmflow of a third grade fluid down an inclined plane. Chaos, Solitons and Fractals, 35, 140-147 (2008)
[26] Eringen, A. C. Theory of micropolar fluids. J. Math. Mech., 16, 1-18 (1966)
[27] Eringen, A. C. Theory of thermomicropolar fluids. J. Math. Appl., 38, 480-495 (1972)
[28] Armin, T., Turk, M. A., and Sylvester, N. D. Microcontinuum fluid mechanics — a review. Int.J. Engng. Sci., 11, 905-915 (1973)
[29] Armin, T., Turk, M. A., and Sylvester, N. D. Application of microcontinuum fluid mechanics. Int.J. Engng. Sci., 12, 273-279 (1974)
[30] Lukaszewicz, G. Micropolar Fluids: Theory and Application, Birkhäuser, Basel (1999)
[31] Eringen, A. C. Microcontinuum Field Theories, II: Fluent Media, Springer, New York (2001)
[32] Chaudhary, R. C. and Jha, A. K. Effects of chemical reactions on MHD micropolar fluid pasta vertical plate in slip-flow regime. Appl. Math. Mech. -Engl. Ed., 29, 1179-1194 (2008) DOI10.1007/s10483-008-0907-x
[33] Hayat, T., Sajid, M., and Ali, N. On exact solutions for thin film flows of a micropolar fluid.Communications in Nonlinear Science and Numerical Simulation, 14, 451-461 (2009)
[34] Dandapat, B. S., Santra, B., and Vajravelu, K. The effects of variable fluid properties and thermocapillarityon the flow of a thin film on an unsteady stretching sheet. Int. J. Heat Mass Transfer,50, 991-996 (2007)
[35] Nadeem, S. and Faraz, N. Thin film flow of a second grade fluid over a stretching/shrinking sheetwith variable temperature-dependent viscosity. Chinese Physics Letters, 27, 034704 (2010)
[36] Makinde, O. D. Laminar falling liquid film with variable viscosity along an inclined heated plate.Applied Mathematics and Computation, 175, 80-88 (2006)
|