[1] Maire, P. H., Abgrall, R., Breil, J., and Ovadia, J. A cell-centered Lagrangian scheme for com-pressible flow problems. SIAM J. Sci. Comput., 29(4), 1781-1824 (2007)
[2] Von Neumann, J. and Richtmyer, R. D. A method for the numerical calculations of hydrodynamicsshocks. J. Appl. Phys., 21, 232-238 (1950)
[3] Wilkins, M. L. Calculation of elastic plastic flow. Methods in Computational Physics (ed. Alder,B.), Vol. 3, Academic Press, New York (1964)
[4] Caramana, E. J. and Shashkov, M. J. Elimination of artificial grid distorsion and hourglass-typemotions by means of Lagrangian subzonal masses and pressures. J. Comput. Phys., 142, 521-561(1998)
[5] Caramana, E. J., Shashkov, M. J., and Whalen, P. P. Formulations of artificial viscosity formultidimensional shock wave computations. J. Comput. Phys., 144, 70-97 (1998)
[6] Campbell, J. C. and Shashov, J. C. A tensor artificial viscosity using a mimetic finite differencealgorithm. J. Comput. Phys., 172, 739-765 (2001)
[7] Caramana, E. J., Burton, D. E., Shashov, M. J., andWhalen, P. P. The construction of compatiblehydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys., 146, 227-262(1998)
[8] Campbell, J. C. and Shashov, M. J. A compatible Lagrangian hydrodynamics algorithm for un-structured grids. Selcuk J. Appl. Math., 4(2), 53-70 (2003)
[9] Scovazzi, G., Christon, M. A., Hughes, T. J. R., and Shadid, J. N. Stabilized shock hydrodynamics:I. a Lagrangian method. Comput. Methods Appl. Mech. Engrg., 196, 923-966 (2007)
[10] Scovazzi, G. Stabilized shock hydrodynamics: II. design and physical interpretation of the SUPGoperator for Lagrangian computations. Comput. Methods Appl. Mech. Engrg., 196, 966-978 (2007)
[11] Scovazzi, G., Love, E., and Shashkov, M. J. Multi-scale Lagrangian shock hydrodynamics onQ1/P0 finite elements: theoretical framework and two-dimensional computations. Comput. Meth-ods Appl. Mech. Engrg., 197, 1056-1079 (2008)
[12] Godunov, S. K., Zabrodine, A., Ivanov, M., Kraiko, A., and Prokopov, G. R閟olution Num閞iquedes Problèmes Multidimensionnels de la Dynamique des Gaz, Editions Mir, Moscow (1979)
[13] Adessio, F. L., Carroll, D. E., Dukowicz, J. K., Johnson, J. N., Kashiwa, B. A., Maltrud, M. E.,and Ruppel, H. M. Caveat : a Computer Code for Fluid Dynamics Problems with Large Distortionand Internal Slip, Technical Report LA-10613-MS, Los Alamos National Laboratory (1986)
[14] Dukowicz, J. K. and Meltz, B. Vorticity errors in multidimensional Lagrangian codes. J. Comput.Phys., 99, 115-134 (1992)
[15] Despres, B. and Mazeran, C. Lagrangian gas dynamics in two dimensions and Lagrangian systems.Arch. Rational Mech. Anal., 178, 327-372 (2005)
[16] Carr?, G., Delpino, S., Despres, B., and Labourasse, E. A cell-centered Lagrangian hydrodynamicsscheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys., 228, 5160-5183(2009) |