[1] Cheng, C. M. Resistance to thermal shock. Journal of the American Rocket Society, 21(6), 147-153(1951)
[2] Kingery, W. D. Factors affecting thermal stress resistance of ceramic materials. Journal of theAmerican Ceramic Society, 38(1), 3-15 (1955)
[3] Hasselman, D. P. H. Elastic energy at fracture and surface energy as design criteria for thermalshock. Journal of the American Ceramic Society, 46(11), 535-540 (1963)
[4] Hasselman, D. P. H. Unified theory of thermal shock fracture initiation and crack propagation inbrittle ceramics. Journal of the American Ceramic Society, 52(11), 600-604 (1969)
[5] Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. Introduction to Ceramics, 2nd ed., JohnWiley and Sons, New York (1976)
[6] Lewis, D. Comparison of critical ΔTc values in thermal shock with the R parameter. Journal ofthe American Ceramic Society, 63(11-12), 713-714 (1980)
[7] Wang, H. and Singh, R. N. Thermal shock behaviour of ceramics and ceramic composites. InternationalMaterials Reviews, 39(6), 228-244 (1994)
[8] Green, D. J. An Introduction to the Mechanical Properties of Ceramics, Cambridge UniversityPress, Cambridge (1998)
[9] Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., and Zaykoski, J. A. Refractory diborides ofzirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347-1364 (2007)
[10] Song, F., Meng, S. H., Xu, X. H., and Shao, Y. F. Enhanced thermal shock resistance of ceramicsthrough biomimetically inspired nanofins. Physical Review Letters, 104(12), 125502 (2010)
[11] Ghosh, M. K. and Kanoria, M. Generalized thermoelastic functionally graded spherically isotropicsolid containing a spherical cavity under thermal shock. Applied Mathematics and Mechanics(English Edition), 29(10), 1263-1278 (2008) DOI 10.1007/s10483-008-1002-2
[12] Meng, S. H., Liu, G. Q., and Sun, S. L. Prediction of crack depth during quenching test for anultra high temperature ceramic. Materials and Design, 31(1), 556-559 (2010)
[13] Shao, Y. F., Xu, X. H., Meng, S. H., Bai, G. H., Jiang, C. P., and Song, F. Crack patternsin ceramic plates after quenching. Journal of the American Ceramic Society, 93(10), 3006-3008(2010)
[14] Liang, J., Wang, Y., Fang, G. D., and Han, J. C. Research on thermal shock resistance of ZrB2-SiCAlNceramics using an indentation-quench method. Journal of Alloys and Compounds, 493(1-2),695-698 (2010)
[15] Han, J. C. and Wang, B. L. Thermal shock resistance of ceramics with temperature-dependentmaterial properties at elevated temperature. Acta Materialia, 59(4), 1373-1382 (2011)
[16] Levine, S. R., Opila, E. J., Halbig, M. C., Kiser, J. D., Singh, M., and Salem, J. A. Evaluation ofultra-high temperature ceramics for aeropropulsion use. Journal of the European Ceramic Society,22(14-15), 2757-2767 (2002)
[17] Zhang, X. H., Xu, L., Du, S. Y., Han, W. B., Han, J. C., and Liu, C. Y. Thermal shock behavior ofSiC-whisker-reinforced diboride ultrahigh-temperature ceramics. Scripta Materialia, 59(1), 55-58(2008)
[18] Liang, J., Wang, C., Wang, Y., Jing, L., and Luan, X. The influence of surface heat transferconditions on thermal shock behavior of ZrB2-SiC-AlN ceramic composites. Scripta Materialia,61(6), 656-659 (2009)
[19] Zhang, X. H., Wang, Z., Hu, P., Han, W. B., and Hong, C. Q. Mechanical properties and thermalshock resistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers. ScriptaMaterialia, 61(8), 809-812 (2009)
[20] Özdemir, I., Brekelmans, W. A. M., and Geers, M. G. D. Modeling thermal shock damage inrefractory materials via direct numerical simulation (DNS). Journal of the European CeramicSociety, 30(7), 1585-1597 (2010)
[21] Li, W. G., Cheng, T. B., Li, D. Y., and Fang, D. N. Numerical simulation for thermal shockresistance of ultra-high temperature ceramics considering the effects of initial stress field. Advancesin Materials Science and Engineering, 2011, 757543 (2011)
[22] Incropera, F. P., DeWitt, D. P., Bergman, T. L., and Lavine, A. S. Fundamentals of Heat andMass Transfer, 6th ed., John Wiley and Sons, New York, 166-188 (2007)
[23] Timoshenko, S. and Goodier, J. N. Theory of Elasticity, 2nd ed., McGraw-Hill Book Company,New York, 399-404 (1951)
[24] Song, F., Liu, Q. N., Meng, S. H., and Jiang, C. P. A universal Biot number determining thesusceptibility of ceramics to quenching. Europhysics Letters, 87(5), 54001 (2009)
[25] Manson, S. S. Behavior of Materials Under Conditions of Thermal Stress, NACA Technical Note2933, Washington, D. C. (1953)
[26] Li, W. G. and Fang, D. N. Effects of thermal environments on the thermal shock resistance ofultra-high temperature ceramics. Modern Physics Letters B, 22(14), 1375-1380 (2008)
[27] Manson, S. S. Thermal stresses: I. Machine Design, 30, 114-120 (1958)
[28] Becher, P. F., Lewis, D., III, Garman, K. R., and Gonzalez, A. C. Thermal-shock resistance ofceramics-size and geometry-effects in quench tests. American Ceramic Society Bulletin, 59(5),542-545 (1980)
[29] Noda, N., Matsunaga, Y., Tsuji, T., and Nyuko, H. Thermal shock problems of elastic bodieswith a crack. Journal of Thermal Stresses, 12(3), 369-383 (1989)
[30] Collin, M. and Rowcliffe, D. Analysis and prediction of thermal shock in brittle materials. ActaMaterialia, 48(8), 1655-1665 (2000)
[31] Kim, Y., Lee, W. J., and Case, E. D. The measurement of the surface heat transfer coefficientfor ceramics quenched into a water bath. Materials Science and Engineering A, 145(1), L7-L11(1991)
[32] Opeka, M. M., Talmy, I. G., Wuchina, E. J., Zaykoski, J. A., and Causey, S. J. Mechanical,thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of theEuropean Ceramic Society, 19(13-14), 2405-2414 (1999)
[33] Wuchina, E., Opeka, M., Causey, S., Buesking, K., Spain, J., Cull, A., Routbort, J., andGuitierrez-Mora, F. Designing for ultrahigh-temperature applications: the mechanical and thermalproperties of HfB2, HfCx, HfNx, and αHf(N). Journal of Materials Science, 39(19), 5939-5949(2004)
[34] Loehman, R., Corral, E., Dumm, H. P., Kotula, P., and Tandon, R. Ultra High TemperatureCeramics for Hypersonic Vehicle Applications, SAND 2006-2925, Albuquerque, NM, USA (2006) |