[1] Moudafi, A. Proximal methods for a class of bilevel monotone equilibrium problems. J. Global Optim., 47(2), 287-292 (2010) [2] Ding, X. P. Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces. J. Optim. Theory Appl., 146, 347-357 (2010) [3] Ding, X. P. Existence and algorithm of solutions for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces. Acta Math. Sinica, 28(3), 503-516 (2012) [4] Ding, X. P. Bilevel generalized mixed equilibrium problems involving generalized mixed variational-like inequality problems in reflexive Banach spaces. Appl. Math. Mech. -Engl. Ed., 32(11), 1457-1474 (2011) DOI 10.1007/s10483-011-1515-x [5] Ding, X. P. A new class of bilevel generalized mixed equilibrium problems in Banach spaces. Acta Math. Sci., 32(4), 1571-1583 (2012) [6] Ding, X. P., Liou, Y. C., and Yao, J. C. Existence and algorithm of solutions for bilevel generalized mixed equilibrium problems in Banach spaces. J. Global Optim., 53(2), 331-346 (2012) [7] Ding, X. P. Existence and iterative algorithm of solutions for a class of bilevel generalized mixed equilibrium problems in Banach Spaces. J. Global Optim., 53(3), 525-537 (2012) [8] Chadli, O., Mahdioui, H., and Yao, J. C. Bilevel mixed equilibrium problems in Banach spaces: existence and algorithmic aspects. Numer. Algebra Cont. Optim., 1(3), 549-561 (2011) [9] Anh, P. N., Kim, J. K., and Muu, L. D. An extragradient algorithm for solving bilevel pseu- domonotone variational inequalities. J. Global Optim., 52(3), 627-639 (2012) [10] Anh, L. Q., Khanh, P. Q., and Van, D. T. M. Well-possedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints. J. Optim. Theory Appl., 153, 42-59 (2012) [11] Chen, J. W., Wan, Z. P., and Cho, Y. J. The existence of solutions and well-posedness for bilevel mixed equilibrium problems in Banach spaces. Taiwanese J. Math., 17(2), 725-748 (2013) [12] Ding, X. P. and Tan, K. K. A minimax inequality with applications to existence of equilibrium point and fixed point theorems. Colloq. Math., 63, 233-247 (1992) [13] Liou, Y. C. and Yao, J. C. Bilevel decision via variational inequalities. Comput. Math. Appl., 49, 1243-1253 (2005) [14] Ding, X. P. and Liou, Y. C. Bilevel optimization problems in topological spaces. Taiwanese J. Math., 10(1), 173-179 (2006) [15] Ding, X. P. Iterative algorithm of solutions for generalized mixed implicit equilibrium-like prob- lems. Appl. Math. Comput., 162(2), 799-809 (2005) [16] Ding, X. P., Lin, Y. C., and Yao, J. C. Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems. Appl. Math. Mech. -Engl. Ed., 27(9), 1157-1164 (2006) DOI 10.1007/s10483-006-0901-1 [17] Moudafi, A. Mixed equilibrium problems: sensitivity analysis and algorithmic aspects. Comput. Math. Appl., 44, 1099-1108 (2002) [18] Kazmi, K. R. and Khan, F. A. Existence and iterative approximation of solutions of generalized mixed equilibrium problems. Comput. Math. Appl., 56, 1314-1321 (2008) [19] Ding, X. P. Existence and algorithm of solutions for nonlinear mixed quasi-variational inequalities in Banach spaces. J. Comput. Appl. Math., 157, 419-434 (2003) [20] Ding, X. P. Existence and algorithm of solutions for mixed variational-like inequalities in Banach spaces. J. Optim. Theory Appl., 127, 285-302 (2005) [21] Ding, X. P. and Yao, J. C. Existence and algorithm of solutions for mixed quasi-variational-like inclusions in Banach spaces. Comput. Math. Appl., 49, 857-869 (2005) [22] Ding, X. P., Yao, J. C., and Zeng, L. C. Existence and algorithm of solutions for generalized strongly nonlinear mixed variational-like inequalities in Banach spaces. Comput. Math. Appl., 55, 669-679 (2008) [23] Kazmi, K. R. and Khan, F. A. Auxiliary problems and algorithm for a system of generalized variational-like inequality problems. Appl. Math. Comput., 187, 789-796 (2007) [24] Xia, F. Q. and Ding, X. P. Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems. Appl. Math. Comput., 188, 173-179 (2007) [25] Antipin, A. S. Iterative gradient prediction-type methods for computing fixed-point of extremal mappings. Parametric Optimization and Related Topics IV (eds. Guddat, J., Jonden, H. T., Nizicka, F., Still, G., and Twitt, F.), Peter Lang, Frankfurt Main, 11-24 (1997) [26] Aubin, J. P. and Cellina, A. Differential Inclusions, Springer, Berlin/Heidberg/New York (1994) [27] Klein, E. and Thompson, A. C. Theory of Correspondence, John Wiley & Sons, New York (1984) [28] Lin, L. J. and Yu, Z. Y. On some equilibrium problems for multimaps. J. Comput. Appl. Math., 129, 171-183 (2001) |