[1] Reisner, W., Pedersen, J. N., and Austin, R. H. DNA confinement in nanochannels: physics and biological applications. Report on Progress in Physics, 75(10), 106601 (2012)
[2] Wang, J. and Gao, H. A generalized bead-rod model for Brownian dynamics simulations of worm- like chains under strong confinement. The Journal of Chemical Physics, 123(8), 084906 (2005)
[3] De Gennes, P. G. Scaling Concepts in Polymer Physics, Cornell University Press, New York (1979)
[4] Odijk, T. Translational friction coefficient of hydrodynamically screened rodlike macromolecules. Macromolecules, 19(7), 2073-2074 (1986)
[5] Schiessel, H. The physics of chromatin. Journal of Physics: Condensed Matter, 15(19), R699 (2003)
[6] Earnshaw, W. C. and Harrison, S. C. DNA arrangement in isometric phage heads. nature, 268, 598-602 (1977)
[7] Purohit, P. K., Kondev, J., and Phillips, R. Mechanics of DNA packaging in viruses. Proceedings of the National Academy of Sciences, 100(6), 3173-3178 (2003)
[8] Wang, J., Li, L., and Gao, H. Compressed wormlike chain moving out of confined space: a model of DNA ejection from bacteriophage. Acta Mechanica Sinica, 28(4), 1219-1226 (2012)
[9] Odijk, T. The statistics and dynamics of confined or entangled stiff polymers. Macromolecules, 16(8), 1340-1344 (1983)
[10] Odijk, T. Scaling theory of DNA confined in nanochannels and nanoslits. Physical Review E, 77, 060901 (2008)
[11] Wang, Y., Tree, D. R., and Dorfman, K. D. Simulation of DNA extension in nanochannels. Macromolecules, 44(16), 6594-6604 (2011)
[12] Hsu, H. P. and Binder, K. Semi-flexible polymer chains in quasi-one-dimensional confinement: a Monte Carlo study on the square lattice. Soft Matter, 9(44), 10512-10521 (2013)
[13] Wang, J. and Gao, H. Stretching a stiff polymer in a tube. Journal of Materials Science, 42, 8838-8843 (2007)
[14] Dai, L. and Doyle, P. S. Comparisons of a polymer in confinement versus applied force. Macromolecules , 46, 6336-6344 (2013)
[15] Wang, J., Fan, X., and Gao, H. Stretching short DNAs in electrolytes. Molecular and Cellular Biomechanics, 3(1), 13-19 (2006)
[16] Wang, J. and Gao, H. Brownian dynamics simulations of charged semiflexible polymers confined to curved surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 4(2), 174-179 (2011)
[17] Liu, B., Wang, J., Fan, X., Kong, Y., and Gao, H. An effective bead-spring model for polymer simulation. Journal of Computational Physics, 227, 2794-2807 (2008)
[18] Kierfeld, J., Niamploy, O., Sa-Yakanit, V., and Lipowsky, R. Stretching of semiflexible polymers with elastic bonds. European Physical Journal E, 14(1), 17-34 (2004)
[19] Burkhardt, T. W. Free energy of a semiflexible polymer in a tube and statistics of a randomly- accelerated particle. Journal of Physics A: Mathematical, Nuclear and General, 30(7), L167-L172 (1997)
[20] Yang, Y., Burkhardt, T.W., and Gompper, G. Free energy and extension of a semiflexible polymer in cylindrical confining geometries. Physical Review E, 76(1), 011804 (2007) |