[1] Blum, E. and Oettli, W. From optimization and variational inequalities problems to equilibrium problems. Math. Stud., 63, 123-145 (1994) [2] Balaj, M. Coincidence and maximal element theorems and their applications to generalized equi- librium problems and minimax inequalities. Nonlinear Anal. TMA, 68, 3962-3971 (2008) [3] Balaj, M. and Lin, L. J. Fixed points, coincidence points and maximal elements with applications to generalized equilibrium problems and minimax theory. Nonlinear Anal. TMA, 70, 393-403 (2009) [4] Ding, X. P. The generalized game and the system of generalized vector quasi-equilibrium problems in locally FC-uniform spaces. Nonlinear Anal. TMA, 68, 1028-1036 (2008) [5] Lin, L. J. Existence results for primal and dual generalized vector equilibrium problems with applications to generalized semi-infinite programming. J. Global Optim., 33, 579-595 (2005) [6] Lin, L. J. and Hsu, H. W. Existence theorems of systems of vector quasi-equilibrium problems and mathematical programs with equilibrium constraints. J. Global Optim., 37, 195-213 (2007) [7] Sach, P. H., Lin, L. J., and Tuan, L. A. Generalized vector quasivariational inclusion problems with moving cones. J. Optim. Theory Appl., 147, 607-620 (2010) [8] Yang, M. G. and Deng, L. Existence theorems of solutions for systems of generalized vector quasi- equilibrium problems with moving cones and its applications in LĪ-spaces. Nonlinear Anal. Forum, 17, 11-22 (2012) [9] Yang, M. G., Huang, N. J., and Li, C. S. Coincidence and maximal element theorems in abstract convex spaces with applications. Taiwan. J. Math., 15, 13-29 (2011) [10] Luc, D. T. and Penot, J. P. Convergence of asymptotic directions. Trans. Amer. Math. Soc., 353, 4095-4121 (2001) [11] Park, S. On generalizations of the KKM principle on abstract convex spaces. Nonlinear Anal. Forum, 11, 67-77 (2006) [12] Faigle, U., Kern, W., and Still, G. Algorithmic Principles of Mathematical Programming, Kluwer Academic Publishers, Dordrecht, the Netherlands (2003) [13] Fukushima, M. and Pang, J. S. Some feasible issues in mathematical programs with equilibrium constraints. SIAM J. Optim., 8, 673-681 (1998) [14] Luo, Z. Q., Pang, J. S., and Ralph, D. Mathematical Program with Equilibrium Constraint, Cam- bridge University Press, Cambridge (1997) [15] Birbil, S. I., Bouza, G., Frenk, J. B. G., and Still, G. Equilibrium constrained optimization problems. Eur. J. Oper. Res., 169, 1108-1127 (2006) [16] Tan, N. X. Quasi-variation inequalities in topological linear locally convex Hausdorff spaces. Math. Nachr., 122, 231-246 (1995) [17] Aubin, J. P. and Cellina, A. Differential Inclusions, Springer-Verlag, Berlin/Heidelberg (1984) [18] Tian, G. Q. Generalizations of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity. J. Math. Anal. Appl., 170, 457-471 (1992) [19] Yang, M. G. and Huang, N. J. Coincidence theorems for noncompact RC-maps in abstract convex spaces with applications. Bull. Korean Math. Soc., 49, 1147-1161 (2012) [20] Luc, D. T. Theory of Vector Optimization, Vol 319, Springer, Berlin (1989) [21] Yang, M. G., Xu, J. P., and Huang, N. J. Systems of generalized quasivariational inclusion problems with applications in LĪ-spaces. Fixed Point Theory Appl., 2011, 561573 (2011) DOI 10.1155/2011/561573 [22] Ding, X. P. and Ding, T. M. KKM type theorems and generalized vector equilibrium problems in noncompact FC-spaces. J. Math. Anal. Appl., 331, 1230-1245 (2007) |