[1] Farrokhabadi, A., Rach, R., and Abadyan, M. Modeling the static response and pull-in instability of CNT nanotweezers under the Coulomb and van der Waals attractions. Physica E, 53, 137-145 (2013)
[2] Kim, P. and Lieber, C. M. Nanotube nanotweezers. Science, 286, 2148-2150 (1999)
[3] Sasaki, N., Toyoda, A., Sayito, H., Itamura, N., Ohyama, M., and Miura, K. Theoretical simula-tion of atomic-scale peeling of single-walled carbon nanotube from graphite surface. e-Journal of Surface Science and Nanotechnology, 4, 133-137 (2006)
[4] Ke, C. H., Pugno, N., Peng, B., and Espinosa, H. D. Experiments and modeling of carbon nanotube NEMS device. Journal of the Mechanics and Physics of Solids, 53, 1314-1333 (2005)
[5] Jiang, L., Tan, H., Wu, J., Huang, Y., and Hwang, K. C. Continuum modeling of interfaces in polymer matrix composites reinforced by carbon nanotubes. Nano, 2, 139-148 (2007)
[6] Koochi, A., Kazemi, A. S., Noghrehabadi, A., Yekrangi, A., and Abadyan, M. New approach to model the buckling and stable length of multi walled carbon nanotube probes near graphite sheets. Materials and Design, 32, 2949-2955 (2011)
[7] Farrokhabadi, A., Koochi, A., and Abadyan, M. Modeling the instability of CNT tweezers using a continuum model. Microsystem Technologies, 20, 291-302 (2014)
[8] Noghrehabadi, A., Ghalambaz, M., Beni, Y. T., Abadyan, M., Abadi, M. N., and Abadi, M. N. A new solution on the buckling and stable length of multi wall carbon nanotube probes near graphite sheets. Procedia Engineering, 10, 3725-3733 (2011)
[9] Noghrehabadi, A., Ghalambaz, M., and Ghanbarzadeh, A. Buckling of multi wall carbon nan-otube cantilevers in the vicinity of graphite sheets using monotone positive method. Journal of Computational and Applied Research in Mechanical Engineering, 1, 89-97 (2012)
[10] Lin, W. H. and Zhao, Y. P. Casimir effect on the pull-in parameters of nanometer switches. Microsystem Technologies, 11, 80-85 (2005)
[11] Guo, J. G. and Zhao, Y. P. Influence of van der Waals and Casimir forces on electrostatic torsional actuators. Journal of Microelectromechanical Systems, 13, 1027-1035 (2004)
[12] Guo, J. G. and Zhao, Y. P. Dynamic stability of electrostatic torsional actuators with van der Waals effect. International Journal of Solids and Structures, 43, 675-685 (2006)
[13] Wang, G. W., Zhang, Y., Zhao, Y. P., and Yang, G. T. Pull-in instability study of carbon nanotubes tweezers under the influence of van der Waals forces. Journal of Micromechanics and Microengineering, 14, 1119-1125 (2004)
[14] Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42, 475-487 (1994)
[15] Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., and Tong, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51, 1477-1503 (2003)
[16] McFarland, A. W. and Colton, J. S. Thermoplastic polymer microcantilever sensors fabricated via micromolding. Journal of Micromechanics and Microengineering, 15, 1060-1067 (2005)
[17] Aydogdu, M. A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E, 41, 1651-1655 (2009)
[18] Yang, J., Ke, L. L., and Kitipornchai, S. Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E, 42, 1727-1735 (2010)
[19] Ejike, U. B. The plane circular crack problem in the linearized couple-stress theory. International Journal of Engineering Science, 7, 947-961 (1969)
[20] Kishida, M. and Sasaki, K. Torsion of a circular bar with annular groove in couple-stress theory. International Journal of Engineering Science, 28, 773-781 (1990)
[21] Yang, F., Chong, A. C. M., Lam, D. C. C., and Tong, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39, 2731-2743 (2002)
[22] Park, S. K. and Gao, X. L. Bernoulli-Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16, 2355-2359 (2006)
[23] Tadi-Beni, Y., Koochi, A., Kazemi, A. S., and Abadyan, M. Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E, 43, 979-988 (2011)
[24] Ma, H. M., Gao, X. L., and Reddy, J. N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics and Physics of Solids, 56, 3379-3391 (2008)
[25] Abdi, J., Koochi, A., Kazemi, A. S., and Abadyan, M. Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Materials and Structures, 20, 055011 (2011)
[26] Baghani, M. Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. International Journal of Engineering Science, 54, 99-105 (2012)
[27] Zhang, J. and Fu, Y. Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory, Meccanica, 47, 1649-1658 (2012)
[28] Wang, W., Huang, Y., Hsia, K. J., Hu, K. X., and Chandra, A. A study of microbend test by strain gradient plasticity. International Journal of Plasticity, 19, 365-382 (2003)
[29] Maranganti, R. and Sharma, P. A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. Journal of the Mechanics and Physics of Solids, 55, 1823-1852 (2007)
[30] Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J., and Yan, Y. J. Size dependence of Young's modulus in ZnO nanowires. Physical Review Letters, 96, 075505 (2006)
[31] Cuenot, S., Demoustier-Champagne, S., and Nysten, B. Elastic modulus of polypyrrolenanotubes. Physical Review Letters, 85, 1690-1693 (2000)
[32] Liang, S., Han, R. P. S., Wang, J., and Lim, C. T. Modeling the size-dependent elastic properties of polymeric nanofibers. Nanotechnology, 19, 455706 (2008)
[33] Timoshenko, S. Theory of Plates and Shells, McGraw-Hill, New York (1987)
[34] Jackson, J. D. Classical Electrodynamics, Wiley, New York (1998)
[35] Hayt, W. H. Engineering Electromagnetics, McGraw-Hill, New York (1981)
[36] Lennard-Jones, J. E. Perturbation problems in quantum mechanics. Proceedings of the Royal Society of London. Series A, 129, 598-615 (1930)
[37] Girifalco, L. A., Hodak, M., and Lee, R. S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B, 62, 13104-13110 (2000)
[38] Ke, C. H. and Espinosa, H. D. The Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, Valencia (2006)
[39] Israelachvili, J. N. Intermolecular and Surface Forces with Applications to Colloidal and Biological Systems, Academic Press, New York (1985)
[40] Ramezani, A., Alasty, A., and Akbari, J. Influence of van derWaals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators. International Journal of Solids and Structures, 44, 4925-4941 (2007)
[41] Alves, E., Ma, T. F., and Pelicer, M. L. Monotone positive solutions for a fourth order equation with nonlinear boundary conditions. Nonlinear Analysis, Theory, Methods and Applications, 71, 3834-3841 (2009)
[42] Baghani, M., Jafari-Talookolaei, R. A., and Salarieh, H. Large amplitudes free vibrations and post-buckling analysis of unsymmetrically laminated composite beams on nonlinear elastic foundation. Applied Mathematical Modelling, 35, 130-138 (2011)
[43] He, J. H. Variational iteration method-some recent results and new interpretations. Journal of Computational and Applied Mathematics, 207, 3-17 (2007)
[44] He, J. H. and Wu, X. H. Variational iteration method: new development and applications. Com-puters and Mathematics with Applications, 54, 881-894 (2007)
[45] Jafari, H., Saeidy, M., and Baleanu, D. The variational iteration method for solving nth-order fuzzy differential equations. Central European Journal of Physics, 10, 76-85 (2011)
[46] Jafari, H. and Alipoor, A. A new method for calculating general lagrange multiplier in the vari-ational iteration method. Numerical Methods for Partial Differential Equations, 27, 996-1001 (2011)
[47] Chang, J., Min, B. K., Kim, J., Lee, S. L., and Lin, L. Electrostatically actuated carbon nanowire nanotweezers. Smart Materials and Structures, 18, 065017 (2009)
[48] Lin, W. H. and Zhao, Y. P. Dynamics behavior of nanoscale electrostatic actuators. Chinese Physics Letter, 20, 2070-2073 (2003)
[49] Ramezani, A., Alasty, A., and Akbari, J. Analytical investigation and numerical verification of Casimir effect on electrostatic nanocantilevers. Microsystem Technologies, 14, 145-157 (2008) |