[1] Wolff, J. Das Gesetz der Transformation der Knochen. Hirschwald, Berlin, 8-12 (1892)
[2] Biot, M. A. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26(2), 182-185 (1955)
[3] Turner, C. H., Rho, J., Takano, Y., Tsui, T. Y., and Pharr, G. M. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. Journal of Biomechanics, 35(4), 437-441 (1999)
[4] Abousleiman, Y. and Cui, L. Poroelastic solutions in transversely isotropic media for wellbore and cylinder. International Journal of Solids and Structures, 35, 4905-4929 (1998)
[5] Rémond, A. and Naili, S. Transverse isotropic poroelastic osteon model under cyclic loading. Mechanics Research Communications, 32, 645-651 (2005)
[6] Wang, F. and Wu, C. Q. Imitation bone optimization of composite pipe using trenchless technology. Journal of Mechanics and MEMS, 1(2), 311-315 (2009)
[7] Yang, K. and Wang, F. Buckling of functionally graded cylindrically shells (in Chinese). Acta Scientiarum Naturalium Universitatis Sunyatseni, 47(2), 9-13 (2008)
[8] Fang, F. and Wang, F. Creep buckling analysis of biologic bone in the form of cylindrical shell (in Chinese). Journal of North University of China (Natural Science Edition), 31(4), 364-368 (2010)
[9] Wu, X. G., Chen, W. Y., Gao, Z. P., Guo, H. M., and Wang, L. L. The effects of Haversian fluid pressure and harmonic axial loading on the poroelastic behaviors of a single osteon. Science China Physics, Mechanics and Astronomy, 55, 1646-1656 (2012)
[10] Wu, X. G., Chen, W. Y., and Wang, D. X. Mathematical osteon model for examining poroelastic behaviors. Applied Mathematics and Mechanics (English Edition), 34(4), 405-416 (2013) DOI 10.1007/s10483-013-1680-x
[11] Wu, X. G. and Chen, W. Y. A hollow osteon model for examining its poroelastic behaviors: mathematically modeling an osteon with different boundary cases. European Journal of Mechanics-A/Solids, 40, 34-49 (2013)
[12] Gailani, G. B. and Cowin, S. C. The unconfined compression of a poroelastic annular cylindrical disk. Mechanics of Materials, 40, 507-523 (2008)
[13] Cowin, S. C. Bone poroelasticity. Journal of Biomechanics, 32, 218-238 (1999)
[14] Cowin, S. C. and Mehrabadi, M. M. Compressible and incompressible constituents in anisotropic poroelasticity: the problem of unconfined compression of a disk. Journal of the Mechanics and Physics of Solids, 55, 161-193 (2007)
[15] Cowin, S. C., Gailani, G., and Benalla, M. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 3401-3444 (2009)
[16] Beno, T., Yoon, Y. J., Cowin, S. C., and Fritton, S. P. Estimation of bone permeability using accurate microstructural measurements. Journal of Biomechanics, 39(13), 2378-2387 (2006)
[17] Lemaire, T., Lernout, C. E., Kaiser, J., Naili, S., Rohan, E., and Sansalone, V. A multiscale theoretical investigation of electric measurements in living bone. Bulletin of Mathematical Biology, 73(11), 2649-2677 (2011) |