[1] Kazimi, S. M. A. Solid Mechanics, Tata McGraw-Hill, New Delhi (2001)
[2] Timoshenko, S. History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures, Dover Publications, New York (1983)
[3] Sapountzakis, E. J. and Mokos, V. G. Nonuniform torsion of composite bars of variable thickness by BEM. International Journal of Solids and Structures, 41(7), 1753-1771(2004)
[4] Wang, C. Y. Torsion of tubes of arbitrary shape. International Journal of Solids and Structures, 35(7-8), 719-731(1998)
[5] Ecsedi, I. Elliptic cross section without warping under torsion. Mechanics Research Communica-tions, 31(2), 147-150(2004)
[6] Arghavan, S. and Hematiyan, M. R. Torsion of functionally graded hollow tubes. European Journal of Mechanics-A/Solids, 28(3), 551-559(2009)
[7] Hematiyan, M. R. and Doostfatemeh, A. Torsion of moderately thick hollow tubes with polygonal shapes. Mechanics Research Communications, 34(7-8), 528-537(2007)
[8] Leissa, A.W. and Brann, J. H. On the torsion of bars having symmetry axes. International Journal of Mechanical Sciences, 6(1), 45-50(1964)
[9] Chen, Y. Z. On the torsional rigidity for a hollow shaft with outer or inner keys. Computer Methods in Applied Mechanics and Engineering, 42(1), 107-118(1984)
[10] Hromadka, T. V., II. and Pardoen, G. C. Application of the CVBEM to non-uniform St. Venant torsion. Computer Methods in Applied Mechanics and Engineering, 53(2), 149-161(1985)
[11] Tuba, I. S. Elastic-plastic torsion of shafts with hyperbolic notches. International Journal of Mechanical Sciences, 8(11), 683-701(1966)
[12] Wang, C. Y. Torsion of a flattened tube. Meccanica, 30(2), 221-227(1995)
[13] Allam, M. N.M. and Ghaleb, A. F. Torsion of a composite, viscoelastic prismatic bar of rectangular cross-section. Applied Mathematical Modelling, 6(3), 197-201(1982)
[14] Xu, R. Q., He, J. S., and Chen,W. Q. Saint-Venant torsion of orthotropic bars with inhomogeneous rectangular cross section. Composite Structures, 92(6), 1449-1457(2010)
[15] Ecsedi, I. Some analytical solutions for Saint-Venant torsion of non-homogeneous cylindrical bars. European Journal of Mechanics-A/Solids, 28(5), 985-990(2009)
[16] Mindlin, R. D. Solution of St. Venant's torsion problem by power series. International Journal of Solids and Structures, 11(3), 321-328(1975)
[17] Zehetner, C. Compensation of torsion in rods by piezoelectric actuation. Archive of Applied Me-chanics, 78(12), 921-933(2008)
[18] Maleki, M., Naei, M. H., Hosseinian, E., and Babahaji, A. Exact three-dimensional analysis for static torsion of piezoelectric rods. International Journal of Solids and Structures, 48(2), 217-226(2011)
[19] Maleki, M., Naei, M. H., and Hosseinian, E. Exact three-dimensional interface stress and electrode-effect analysis of multilayer piezoelectric transducers under torsion. International Journal of Solids and Structures, 49(17), 2230-2238(2012)
[20] Barone, G., Pirrotta, A., Santoro, R. Comparison among three boundary element methods for torsion problems: CPM, CVBEM, LEM. Engineering Analysis with Boundary Elements, 35(7), 895-907(2011)
[21] Hromadka, T. V., II. and Guymon, G. Complex polynomial approximation of the Laplace equa-tion. Journal of Hydraulic Engineering, 110(3), 329-339(1984)
[22] Poler, A. C., Bohannon, A. W., Schowalter, S. J., and Hromadka, T. V., II. Using the complex polynomial method with Mathematica to model problems involving the Laplace and Poisson equations. Numerical Methods for Partial Differential Equations, 25(3), 657-667(2009)
[23] Hromadka, T. V., II. The complex variable boundary element method. Lecture Notes in Engineer-ing, 9, 101-161(1984)
[24] Hromadka, T. V., II. and Whitley, R. J. Advances in the Complex Variable Boundary Element Method, Springer, London (1998)
[25] Whitley, R. J. and Hromadka, T. V., II. Theoretical developments in the complex variable bound-ary element method. Engineering Analysis with Boundary Elements, 30(12), 1020-1024(2006)
[26] Di Paola, M., Pirrotta, A., and Santoro, R. Line element-less method (LEM) for beam torsion solution (truly no-mesh method). Acta Mechanica, 195(1-4), 349-364(2008)
[27] Shams-Ahmadi, M. and Chou, S. I. Complex variable boundary element method for torsion of composite shafts. International Journal for Numerical Methods in Engineering, 40(7), 1165-1179(1997)
[28] Santoro, R. The line element-less method analysis of orthotropic beam for the de Saint Venant torsion problem. International Journal of Mechanical Sciences, 52(1), 43-55(2010)
[29] Sapountzakis, E. J. Nonuniform torsion of multi-material composite bars by the boundary element method. Composite Structures, 79(32), 2805-2816(2001)
[30] Sapountzakis, E. J. and Mokos, V. G. Warping shear stresses in nonuniform torsion of composite bars by BEM. Computer Methods in Applied Mechanics and Engineering, 192(39-40), 4337-4353(2003)
[31] Rychlewski, J. Plastic torsion of a rectangular bar with jump non-homogeneity. International Journal of Solids and Structures, 1(3), 243-255(1965)
[32] Johnson, D. A cellular analogy for the elastic-plastic Saint-Venant torsion problem. International Journal of Solids and Structures, 24(3), 321-329(1988)
[33] Edelstein, W. S. On transient creep bounds and approximate solutions for the torsion of thin strips. International Journal of Solids and Structures, 16(12), 1053-1058(1980)
[34] Timoshenko, S. and Goodier, J. N. Theory of Elasticity, McGraw-Hill, New York (1969)
[35] Sadd, M. H. Elasticity: Theory, Applications, and Numerics, Elsevier Science, Amsterdam (2009) |