[1] Nguyen Viet, H., Pastor, J., and Muller, D. A method for predicting linear viscoelastic mechanical behavior of composites, a comparison with other methods and experimental validation. European Journal of Mechanics A-Solids, 14(6), 939-960(1995)
[2] Yi, Y. M., Park, S. H., and Youn, S. K. Asymptotic homogenization of viscoelastic composites with periodic microstructures. International Journal of Solids and Structures, 35(17), 2039-2055(1998)
[3] Liu, S. T., Chen, K. Z., and Feng, X. A. Prediction of viscoelastic property of layered materials. International Journal of Solids and Structures, 41(13), 3675-3688(2004)
[4] Lahellec, N. and Suquet, P. Effective behavior of linear viscoelastic composites: a time integration approach. International Journal of Solids and Structures, 44(2), 507-529(2007)
[5] Ricaud, J. M. and Masson, R. Effective properties of linear viscoelastic heterogeneous media: internal variables formulation and extension to ageing behaviours. International Journal of Solids and Structures, 46(7-8), 1599-1606(2009)
[6] Vu, Q. H., Brenner, R., Castelnau, O., and Moulinec, H. Effective behaviour of viscoelastic poly-crystals and associated local fields inferred from homogenization: incremental collocation ap-proach. Procedia Engineering, 10, 177-182(2011)
[7] Nguyen, S. T., Dormieux, L., Le Pape, Y., and Sanahuja, J. Crack propagation in viscoelastic structures: theoretical and numerical analysis. Computational Materials Science, 50(1), 83-91(2010)
[8] Masson, R., Brenner, R., and Castelnau, O. Incremental homogenization approach for ageing viscoelastic polycrystals. Comptes Rendus MWcanique, 340(4-5), 378-386(2012)
[9] Sanahuja, J. Effective behaviour of ageing linear viscoelastic composites: homogenization ap-proach. International Journal of Solids and Structures, 50(19), 2846-2856(2013)
[10] Bensoussan, A., Lions, J. L., and Papanicolaou, G. Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 158-179(1978)
[11] Mori, T. and Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metallurgica, 21(5), 571-574(1973)
[12] Hill, R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13(4), 213-222(1965)
[13] Li, Y. Y. and Cui, J. Z. The multi-scale computational method for mechanics parameters of the materials with random distribution of multi-scale grains. Composites Science and Technology, 65(9), 1447-1458(2005)
[14] Han, F., Cui, J. Z., and Yu, Y. The statistical second-order two-scale method for mechanical properties of statistically inhomogeneous materials. International Journal for Numerical Methods in Engineering, 84(8), 972-988(2010)
[15] Yang, Z. H., Cui, J. Z., and Nie, Y. F. Microstructural modeling and second-order two-scale computation for mechanical properties of 3D 4-directional braided composites. CMC-Computers, Materials and Continua, 38(3), 175-194(2013)
[16] Yang, Z. Q., Cui, J. Z., and Ma, Q. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete and Continuous Dynamical Systems-Series B, 19(3), 827-848(2014)
[17] Yang, Z. Q., Cui, J. Z., and Nie, Y. F. The second-order two-scale method for heat transfer per-formances of periodic porous materials with interior surface radiation. CMES-Computer Modeling in Engineering and Sciences, 88(5), 419-442(2012)
[18] Cioranescu, D. and Donato, P. An Introduction to Homogenization, Oxford University Press, New York, 125-137(1999)
[19] Cui, J. Z., Shih, T. M., and Wang, Y. L. The two-scale analysis method for bodies with small periodic configurations. Structural Engineering and Mechanics, 7(6), 601-614(1999)
[20] Yu, Y., Cui, J. Z., and Han, F. An effective computer generation method for the composites with random distribution of large numbers of heterogeneous grains. Composites Science and Technology, 68(12), 2543-2550(2008) |