[1] Alberts, B., Johnson, A., Lewis, J., Ralf, M., Roberts, K., and Walter, P. Molecular Biology of the Cell, Garland, New York (2002)
[2] Boal, D. Mechanics of the Cell, Cambridge University Press, Cambridge (2002)
[3] Sten-Knudsen, O. Biological Membranes:Theory of Transport, Potentials and Electric Impulses, Cambridge University Press, Cambridge (2002)
[4] Agre, P. and Parker, J. C. Red Blood Cell Membranes:Structure, Function, Clinical Implications, Marcel Dekker Inc., New York (1989)
[5] Mohandas, N. and Evans, E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annual Review of Biophysics & Biomolecular Structure, 23, 787-818(1994)
[6] Feller, S. E. Molecular dynamics simulations of lipid bilayers. Current Opinion in Colloid & Interface Science, 5, 217-223(2000)
[7] Saiz, L., Bandyopadhyay, S., and Klein, M. L. Towards an understanding of complex biological membranes from atomistic molecular dynamics simulations. Bioscience Reports, 22, 151-173(2002)
[8] Tieleman, D. P., Marrink, S. J., and Berendsen, H. J. C. A computer perspective of membranes:molecular dynamics studies of lipid bilayer systems. Biochimica et Biophysica Acta (BBA)-Reviews, 1331, 235-270(1997)
[9] Tu, K. C., Klein, M. L., and Tobias, D. J. Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. Biophysical Journal, 75, 2147-2156(1998)
[10] Hofsass, C., Lindahl, E., and Edholm, O. Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophysical Journal, 84, 2192-2206(2003)
[11] Tieleman, D. P., Leontiadou, H., Mark, A. E., and Marrink, S. J. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. Journal of the American Chemical Society, 125, 6382-6383(2003)
[12] Canham, P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. Journal of Theoretical Biology, 26, 61-81(1970)
[13] Evans, E. Bending resistance and chemically induced moments in membrane bilayers. Biophysical Journal, 14, 923-931(1974)
[14] Helfrich, W. Elastic properties of lipid bilayers:theory and possible experiments. Zeitschrift für Naturforschung. Teil C:Biochemie, Biophysik, Biologie, Virologie, 28, 693-703(1973)
[15] Seifert, U. Configurations of fluid membranes and vesicles. Advances in Physics, 46, 13-137(1997)
[16] Smondyrev, A. M. and Berkowitz, M. L. Molecular dynamics simulation of fluorination effects on a phospholipid bilayer. Journal of Chemical Physics, 111, 9864-9870(1999)
[17] Zhao, H., Isfahani, A. H., Olson, L. N., and Freund, J. B. A spectral boundary integral method for flowing blood cells. Journal of Computational Physics, 229, 3726-3744(2010)
[18] Veerapaneni, S. K., Rahimian, A., Biros, G., and Zorin, D. A fast algorithm for simulating vesicle flows in three dimensions. Journal of Computational Physics, 230, 5610-5634(2011)
[19] Ramanujan, S. and Pozrikidis, C. Deformation of liquid capsules enclosed by elastic membranes in simple shear flow:large deformations and the effect of fluid viscosities. Journal of Fluid Mechanics, 361, 117-143(2000)
[20] Lac, E., Barthes-Biesel, D., Pelekasis, N., and Tsamopoulos, J. Spherical capsules in threedimensional unbounded Stokes flows:effect of the membrane constitutive law and onset of buckling. Journal of Fluid Mechanics, 516, 303-334(2004)
[21] Peskin, C. S. The immersed boundary method. Acta Numerica, 11, 479-517(2002)
[22] Doddi, S. K. and Bagchi, P. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Physical Review E, 79, 046318(2009)
[23] Yazdani, A. Z. and Bagchi, P. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Physical Review E, 84, 026314(2011)
[24] Fai, T. G., Griffith, B. E., Mori, Y., and Peskin, C. S. Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers I:numerical method and results. SIAM Journal on Scientific Computing, 35, B1132-B1161(2013)
[25] Yazdani, A. Z., Kalluri, R. M., and Bagchi, P. Tank-treading and tumbling frequencies of capsules and red blood cells. Physical Review E, 83, 046305(2011)
[26] Salehyar, S. and Zhu, Q. Deformation and internal stress in a red blood cell as it is driven through a slit by an incoming flow. Soft Matter, 12, 3156-3164(2016)
[27] Pozrikidis, C. Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge (1992)
[28] Peng, Z., Asaro, R. J., and Zhu, Q. Multiscale modelling of erythrocytes in Stokes flow. Journal of Fluid Mechanics, 686, 299-337(2011)
[29] Venturoli, M., Sperotto, M. M., Kranenburg, M., and Smit, B. Mesoscopic models of biological membranes. Physics Reports, 437, 1-54(2006)
[30] Drouffe, J. M., Maggs, A. C., and Leibler, S. Computer-simulations of self-assembled membranes. Science, 254, 1353-1356(1991)
[31] Goetz, R., Gompper, G., and Lipowsky, R. Mobility and elasticity of self-assembled membranes. Physical Review Letters, 82, 221-224(1999)
[32] Kumar, P. B. S., Gompper, G., and Lipowsky, R. Budding dynamics of multicomponent membranes. Physical Review Letters, 86, 3911-3914(2001)
[33] Noguchi, H. and Takasu, M. Adhesion of nanoparticles to vesicles:A Brownian dynamics simulation. Biophysical Journal, 83, 299-308(2002)
[34] Yamamoto, S., Maruyama, Y., and Hyodo, S. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. Journal of Chemical Physics, 116, 5842-5849(2002)
[35] Farago, O. "Water-free" computer model for fluid bilayer membranes. Journal of Chemical Physics, 119, 596-605(2003)
[36] Marrink, S. J. and Mark, A. E. Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. Journal of the American Chemical Society, 125, 15233-15242(2003)
[37] Marrink, S. J. and Mark, A. E. The mechanism of vesicle fusion as revealed by molecular dynamics simulations. Journal of the American Chemical Society, 125, 11144-11145(2003)
[38] Brannigan, G., Philips, P. F., and Brown, F. L. H. Flexible lipid bilayers in implicit solvent. Physical Review E, 72, 011915(2005)
[39] Cooke, I. R., Kremer, K., and Deserno, M. Tunable generic model for fluid bilayer membranes. Physical Review E, 72, 011506(2005)
[40] Laradji, M. and Kumar, P. B. S. Domain growth, budding, and fission in phase-separating selfassembled fluid bilayers. Journal of Chemical Physics, 123, 224902(2005)
[41] Laradji, M. and Kumar, P. B. S. Dynamics of domain growth in multi-component self-assembled fluid vesicles in explict solvent. Physical Review Letters, 93, 198105(2004)
[42] Markvoort, A. J., Pieterse, K., Steijaert, M. N., Spijker, P., and Hilbers, P. A. J. The bilayervesicle transition is entropy driven. Journal of Physical Chemistry B, 109, 22649-22654(2005)
[43] Wang, Z. J. and Frenkel, D. Modeling flexible amphiphilic bilayers:a solvent-free off-lattice Monte Carlo study. Journal of Chemical Physics, 122, 234711(2005)
[44] Brannigan, G., Lin, L. C. L., and Brown, F. L. H. Implicit solvent simulation models for biomembranes. European Biophysics Journal with Biophysics Letters, 35, 104-124(2006)
[45] Markvoort, A. J., van Santen, R. A., and Hilbers, P. A. J. Vesicle shapes from molecular dynamics simulations. Journal of Physical Chemistry B, 110, 22780-22785(2006)
[46] Noguchi, H. and Gompper, G. Meshless membrane model based on the moving least-squares method. Physical Review E, 73, 021903(2006)
[47] Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., and de Vries, A. H. The MARTINI force field:coarse grained model for biomolecular simulations. Journal of Physical Chemistry B, 111, 7812-7824(2007)
[48] Muller, M., Katsov, K., and Schick, M. Biological and synthetic membranes:what can be learned from a coarse-grained description? Physics Reports, 434, 113-176(2006)
[49] Kohyama, T. Simulations of flexible membranes using a coarse-grained particle-based model with spontaneous curvature variables. Physica A:Statistical Mechanics and Its Applications, 388, 3334-3344(2009)
[50] Muller, M., Katsov, K., and Schick, M. New mechanism of membrane fusion. The Journal of Chemical Physics, 116, 2342-2345(2002)
[51] Ayton, G. and Voth, G. A. Bridging microscopic and mesoscopic simulations of lipid bilayers. Biophysical Journal, 83, 3357-3370(2002)
[52] Yip, S. and Short, M. P. Multiscale materials modelling at the mesoscale. Nature Materials, 12, 774-777(2013)
[53] Chang, H. Y., Sheng, Y. J., and Tsao, H. K. Structural and mechanical characteristics of polymersomes. Soft Matter, 10, 6373-6381(2014)
[54] Li, X., Pivkin, I. V., Liang, H., and Karniadakis, G. E. Shape transformations of membrane vesicles from amphiphilic triblock copolymers:a dissipative particle dynamics simulation study. Macromolecules, 42, 3195-3200(2009)
[55] Li, X., Guo, J., Liu, Y., and Liang, H. Microphase separation of diblock copolymer poly (styreneb-isoprene):a dissipative particle dynamics simulation study. The Journal of Chemical Physics, 130, 074908(2009)
[56] Li, X., Liu, Y., Wang, L., Deng, M., and Liang, H. Fusion and fission pathways of vesicles from amphiphilic triblock copolymers:a dissipative particle dynamics simulation study. Physical Chemistry Chemical Physics, 11, 4051-4059(2009)
[57] Chang, H. Y., Chen, Y. F., Sheng, Y. J., and Tsao, H. K. Blending-induced helical morphologies of confined linear triblock copolymers. Journal of the Taiwan Institute of Chemical Engineers, 56, 196-200(2015)
[58] Lin, Y. L., Chang, H. Y., Sheng, Y. J., and Tsao, H. K. Self-assembled polymersomes formed by symmetric, asymmetric and side-chain-tethered coil-rod-coil triblock copolymers. Soft Matter, 10, 1840-1852(2014)
[59] Lin, Y. L., Chang, H. Y., Sheng, Y. J., and Tsao, H. K. The fusion mechanism of small polymersomes formed by rod-coil diblock copolymers. Soft Matter, 10, 1500-1511(2014)
[60] Li, Z., Bian, X., Yang, X., and Karniadakis, G. E. A comparative study of coarse-graining methods for polymeric fluids:Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization. The Journal of Chemical Physics, 145, 044102(2016)
[61] Li, Z., Lee, H. S., Darve, E., and Karniadakis, G. E. Computing the non-Markovian coarsegrained interactions derived from the Mori-Zwanzig formalism in molecular systems:application to polymer melts. The Journal of Chemical Physics, 146, 014104(2017)
[62] Li, H. and Lykotrafitis, G. A coarse-grain molecular dynamics model for sickle hemoglobin fibers. Journal of the Mechanical Behavior of Biomedical Materials, 4, 162-173(2011)
[63] Li, H., Ha, V., and Lykotrafitis, G. Modeling sickle hemoglobin fibers as one chain of coarsegrained particles. Journal of Biomechanics, 45, 1947-1951(2012)
[64] Zhang, Y., Abiraman, K., Li, H., Pierce, D. M., Tzingounis, A. V., and Lykotrafitis, G. Modeling of the axon membrane skeleton structure and implications for its mechanical properties. PLoS Computational Biology, 13, e1005407(2017)
[65] Kim, T., Hwang, W., Lee, H., and Kamm, R. D. Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Computational Biology, 5, e1000439(2009)
[66] Kim, T., Hwang, W., and Kamm, R. Computational analysis of a cross-linked actin-like network. Experimental Mechanics, 49, 91-104(2009)
[67] Lu, L., Li, X., Vekilov, P. G., and Karniadakis, G. E. Probing the twisted structure of sickle hemoglobin fibers via particle simulations. Biophysical Journal, 110, 2085-2093(2016)
[68] Lu, L., Li, H., Bian, X., Li, X., and Karniadakis, G. E. Mesoscopic adaptive resolution scheme (MARS) toward understanding of interactions between sickle cell fibers. Biophysical Journal, 113, 48-59(2017)
[69] Brannigan, G., Tamboli, A. C., and Brown, F. L. H. The role of molecular shape in bilayer elasticity and phase behavior. Journal of Chemical Physics, 121, 3259-3271(2004)
[70] Yuan, H., Huang, C., Li, J., Lykotrafitis, G., and Zhang, S. One-particle-thick, solvent-free, coarse-grained model for biological and biomimetic fluid membranes. Physical Review E, 82, 011905(2010)
[71] Espanol, P. and Warren, P. Statistical-mechanics of dissipative particle dynamics. Europhysics Letters, 30, 191-196(1995)
[72] Hoogerbrugge, P. J. and Koelman, J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19, 155-160(1992)
[73] Grafmuller, A., Shillcock, J., and Lipowsky, R. Dissipative particle dynamics of tension-induced membrane fusion. Molecular Simulation, 35, 554-560(2009)
[74] Brannigan, G. and Brown, F. L. H. Solvent-free simulations of fluid membrane bilayers. The Journal of Chemical Physics, 120, 1059-1071(2004)
[75] Marrink, S. J., de Vries, A. H., and Tieleman, D. P. Lipids on the move:simulations of membrane pores, domains, stalks and curves. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788, 149-168(2009)
[76] Lin, C. M., Li, C. S., Sheng, Y. J., Wu, D. T., and Tsao, H. K. Size-dependent properties of small unilamellar vesicles formed by model lipids. Langmuir, 28, 689-700(2011)
[77] Li, X., Tang, Y. H., Liang, H., and Karniadakis, G. E. Large-scale dissipative particle dynamics simulations of self-assembled amphiphilic systems. Chemical Communications, 50, 8306-8308(2014)
[78] Lindahl, E. and Edholm, O. Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophysical Journal, 79, 426-433(2000)
[79] Kranenburg, M., Laforge, C., and Smit, B. Mesoscopic simulations of phase transitions in lipid bilayers. Physical Chemistry Chemical Physics, 6, 4531-4534(2004)
[80] Kranenburg, M. and Smit, B. Phase behavior of model lipid bilayers. The Journal of Physical Chemistry B, 109, 6553-6563(2005)
[81] Tristram-Nagle, S. and Nagle, J. F. Lipid bilayers:thermodynamics, structure, fluctuations, and interactions. Chemistry and Physics of Lipids, 127, 3-14(2004)
[82] Lenz, O. and Schmid, F. Structure of symmetric and asymmetric ripple phases in lipid bilayers. Physical Review Letters, 98, 058104(2007)
[83] Rodgers, J. M., Sørensen, J., de Meyer F. J., Schiøtt B., and Smit, B. Understanding the phase behavior of coarse-grained model lipid bilayers through computational calorimetry. The Journal of Physical Chemistry B, 116, 1551-1569(2012)
[84] Wu, H. L., Sheng, Y. J., and Tsao, H. K. Phase behaviors and membrane properties of model liposomes:temperature effect. The Journal of Chemical Physics, 141, 124906(2014)
[85] Venturoli, M., Smit, B., and Sperotto, M. M. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophysical Journal, 88, 1778-1798(2005)
[86] Olbrich, K., Rawicz, W., Needham, D., and Evans, E. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophysical Journal, 79, 321-327(2000)
[87] Marrink, S. J., de Vries, A. H., and Mark, A. E. Coarse grained model for semiquantitative lipid simulations. The Journal of Physical Chemistry B, 108, 750-760(2004)
[88] Evans, E. and Rawicz, W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Physical Review Letters, 64, 2094-2097(1990)
[89] Nagle, J. F. and Wilkinson, D. A. Dilatometric studies of the subtransition in dipalmitoylphosphatidylcholine. Biochemistry, 21, 3817-3821(1982)
[90] Tristram-Nagle, S., Wiener, M., Yang, C., and Nagle, J. Kinetics of the subtransition in dipalmitoylphosphatidylcholine. Biochemistry, 26, 4288-4294(1987)
[91] Chernomordik, L. V. and Kozlov, M. M. Protein-lipid interplay in fusion and fission of biological membranes. Annual Review of Biochemistry, 72, 175-207(2003)
[92] Liu, J., Jiang, X., Ashley, C., and Brinker, C. J. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. Journal of the American Chemical Society, 131, 7567-7569(2009)
[93] Attwood, S. J., Choi, Y., and Leonenko, Z. Preparation of DOPC and DPPC supported planar lipid bilayers for atomic force microscopy and atomic force spectroscopy. International Journal of Molecular Sciences, 14, 3514-3539(2013)
[94] Wu, H. L., Chen, P. Y., Chi, C. L., Tsao, H. K., and Sheng, Y. J. Vesicle deposition on hydrophilic solid surfaces. Soft Matter, 9, 1908-1919(2013)
[95] Lei, G. and MacDonald, R. C. Lipid bilayer vesicle fusion:intermediates captured by high-speed microfluorescence spectroscopy. Biophysical Journal, 85, 1585-1599(2003)
[96] García, R. A., Pantazatos, S. P., Pantazatos, D. P., and MacDonald, R. C. Cholesterol stabilizes hemifused phospholipid bilayer vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1511, 264-270(2001)
[97] Stevens, M. J., Hoh, J. H., and Woolf, T. B. Insights into the molecular mechanism of membrane fusion from simulation:evidence for the association of splayed tails. Physical Review Letters, 91, 188102(2003)
[98] Knecht, V. and Marrink, S. J. Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophysical Journal, 92, 4254-4261(2007)
[99] Smeijers, A., Markvoort, A., Pieterse, K., and Hilbers, P. A detailed look at vesicle fusion. The Journal of Physical Chemistry B, 110, 13212-13219(2006)
[100] Gao, L., Lipowsky, R., and Shillcock, J. Tension-induced vesicle fusion:pathways and pore dynamics. Soft Matter, 4, 1208-1214(2008)
[101] Wu, S. and Guo, H. Simulation study of protein-mediated vesicle fusion. The Journal of Physical Chemistry B, 113, 589-591(2008)
[102] Kozlovsky, Y., Chernomordik, L. V., and Kozlov, M. M. Lipid intermediates in membrane fusion:formation, structure, and decay of hemifusion diaphragm. Biophysical Journal, 83, 2634-2651(2002)
[103] Lin, C. M., Wu, D. T., Tsao, H. K., and Sheng, Y. J. Membrane properties of swollen vesicles:growth, rupture, and fusion. Soft Matter, 8, 6139-6150(2012)
[104] Kuzmin, P. I., Zimmerberg, J., Chizmadzhev, Y. A., and Cohen, F. S. A quantitative model for membrane fusion based on low-energy intermediates. Proceedings of the National Academy of Sciences, 98, 7235-7240(2001)
[105] Li, H. and Lykotrafitis, G. Two-component coarse-grained molecular-dynamics model for the h0uman erythrocyte membrane. Biophysical Journal, 102, 75-84(2012)
[106] Li, H. and Lykotrafitis, G. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophysical Journal, 107, 642-653(2014)
[107] Li, J., Lykotrafitis, G., Dao, M., and Suresh, S. Cytoskeletal dynamics of human erythrocyte. Proceedings of the National Academy of Sciences of the United States of America, 104, 4937-4942(2007)
[108] Li, H. and Lykotrafitis, G. Vesiculation of healthy and defective red blood cells. Physical Review E, 92, 012715(2015)
[109] Li, H., Zhang, Y., Ha, V., and Lykotrafitis, G. Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane. Soft Matter, 12, 3643-3653(2016)
[110] Zhang, Y., Huang, C. J., Kim, S., Golkaram, M., Dixon, M. W. A., Tilley, L., Li, J., Zhang, S. L., and Suresh, S. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite. Proceedings of the National Academy of Sciences, 112, 6068-6073(2015)
[111] Dearnley, M., Chu, T., Zhang, Y., Looker, O., Huang, C. J., Klonis, N., Yeoman, J., Kenny, S., Arora, M., Osborne, J. M., Chandramohanadas, R., Zhang, S. L., Dixon, M. W. A., and Tilley, L. Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages. Proceedings of the National Academy of Sciences, 113, 4800-4805(2016)
[112] Tang, Y. H., Lu, L., Li, H., and Karniadakis, G. E. OpenRBC:a fast simulator of red blood cells at protein resolution. Biophysical Journal, 112, 2030-2037(2017)
[113] Discher, D. E., Boal, D. H., and Boey, S. K. Simulations of the erythrocyte cytoskeleton at large deformation, Ⅱ:micropipette aspiration. Biophysical Journal, 75, 1584-1597(1998)
[114] Li, J., Dao, M., Lim, C. T., and Suresh, S. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophysical Journal, 88, 3707-3719(2005)
[115] Pivkin, I. V. and Karniadakis, G. E. Accurate coarse-grained modeling of red blood cells. Physical Review Letters, 101, 118105(2008)
[116] Pivkin, I. V., Peng, Z., Karniadakis, G. E., Buffet, P. A., Dao, M., and Suresh, S. Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proceedings of the National Academy of Sciences, 113, 7804-7809(2016)
[117] Li, X., Caswell, B., and Karniadakis, G. E. Effect of chain chirality on the self-assembly of sickle hemoglobin. Biophysical Journal, 103, 1130-1140(2012)
[118] Fedosov, D. A., Pan, W., Caswell, B., Gompper, G., and Karniadakis, G. E. Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences, 108, 11772-11777(2011)
[119] Fedosov, D. A., Noguchi, H., and Gompper, G. Multiscale modeling of blood flow:from single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 13, 239-258(2014)
[120] Blumers, A. L., Tang, Y. H., Li, Z., Li, X., and Karniadakis, G. E. GPU-accelerated red blood cells simulations with transport dissipative particle dynamics. Computer Physics Communications, 217, 171-179(2017)
[121] Rossinelli, D., Tang, Y. H., Lykov, K., Alexeev, D., Bernaschi, M., Hadjidoukas, P., Bisson, M., Joubert, W., Conti, C., Karniadakis, G., Fatica, M., Pivkin, I., and Koumoutsakos, P. The in-silico lab-on-a-chip:petascale and high-throughput simulations of microfluidics at cell resolution. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Texas (2015)
[122] Peng, Z., Li, X., Pivkin, I. V., Dao, M., Karniadakis, G. E., and Suresh, S. Lipid bilayer and cytoskeletal interactions in a red blood cell. Proceedings of the National Academy of Sciences, 110, 13356-13361(2013)
[123] Li, X., Peng, Z., Lei, H., Dao, M., and Karniadakis, G. E. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philosophical Transactions of the Royal Society A, 372, 20130389(2014)
[124] Chang, H. Y., Li, X., Li, H., and Karniadakis, G. E. MD/DPD multiscale framework for predicting morphology and stresses of red blood cells in health and disease. PLoS Computational Biology, 12, e1005173(2016)
[125] Chang, H. Y., Li, X., and Karniadakis, G. E. Modeling of biomechanics and biorheology of red blood cells in type-2 diabetes mellitus. Biophysical Journal, 113, 481-490(2017)
[126] Espanol, P. and Revenga, M. Smoothed dissipative particle dynamics. Physical Review E, 67, 026705(2003)
[127] Yang, J. A Smoothed Dissipative Particle Dynamics Methodology for Wall-Bounded Domains, Ph. D. dissertation, Worcester Polytechnic Institute, Worcester (2013)
[128] Gatsonis, N. A., Potami, R., and Yang, J. A smooth dissipative particle dynamics method for domains with arbitrary-geometry solid boundaries. Journal of Computational Physics, 256, 441-464(2014)
[129] Fedosov, D. A., Peltomäi, M., and Gompper, G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter, 10, 4258-4267(2014)
[130] Fedosov, D. A. and Gompper, G. White blood cell margination in microcirculation. Soft Matter, 10, 2961-2970(2014)
[131] Li, X., Li, H., Chang, H. Y., Lykotrafitis, G., and Karniadakis, G. E. Computational biomechanics of human red blood cells in hematological disorders. Journal of Biomechanical Engineering, 139, 021008(2017)
[132] Li, X., Dao, M., Lykotrafitis, G., and Karniadakis, G. E. Biomechanics and biorheology of red blood cells in sickle cell anemia. Journal of Biomechanics, 50, 34-41(2017)
[133] Li, X., Vlahovska, P. M., and Karniadakis, G. E. Continuum-and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter, 9, 28-37(2013) |