Applied Mathematics and Mechanics (English Edition) ›› 2018, Vol. 39 ›› Issue (1): 47-62.doi: https://doi.org/10.1007/s10483-018-2259-6
S. NIKOLOV1, A. FERNANDEZ-NIEVES2, A. ALEXEEV1
收稿日期:
2017-09-24
修回日期:
2017-11-10
出版日期:
2018-01-01
发布日期:
2018-01-01
通讯作者:
A. ALEXEEV
E-mail:alexander.alexeev@me.gatech.edu
基金资助:
Project supported by the National Science Foundation of U. S. A. (Nos. DMR-1255288, DMR-1609841, and DGE-1650044)
S. NIKOLOV1, A. FERNANDEZ-NIEVES2, A. ALEXEEV1
Received:
2017-09-24
Revised:
2017-11-10
Online:
2018-01-01
Published:
2018-01-01
Contact:
A. ALEXEEV
E-mail:alexander.alexeev@me.gatech.edu
Supported by:
Project supported by the National Science Foundation of U. S. A. (Nos. DMR-1255288, DMR-1609841, and DGE-1650044)
摘要:
The mechanics and swelling kinetics of polymeric microgels are simulated using a mesoscale computational model based on dissipative particle dynamics. Microgels are represented by a random elastic network submerged in an explicit viscous solvent. The model is used to probe the effect of different solvent conditions on the bulk modulus of the microgels. Comparison of the simulation results through the volume phase transition reveals favorable agreement with Flory-Rehner's theory for polymeric gels. The model is also used to examine the microgel swelling kinetics, and is found to be in good agreement with Tanaka's theory for spherical gels. The simulations show that, during the swelling process, the microgel maintains a nearly homogeneous structure, whereas deswelling is characterized by the formation of chain bundles and network coarsening.
中图分类号:
S. NIKOLOV, A. FERNANDEZ-NIEVES, A. ALEXEEV. Mesoscale modeling of microgel mechanics and kinetics through the swelling transition[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(1): 47-62.
S. NIKOLOV, A. FERNANDEZ-NIEVES, A. ALEXEEV. Mesoscale modeling of microgel mechanics and kinetics through the swelling transition[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(1): 47-62.
[1] Hoffman, A. S. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23(2012) |
[1] | Hongyan CHEN, Youcheng ZENG, Hu DING, Siukai LAI, Liqun CHEN. Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 389-406. |
[2] | M. ABBASI GAVARI, M. R. HOMAEINEZHAD. Nonlinear dynamic modeling of planar moving Timoshenko beam considering non-rigid non-elastic axial effects[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 479-496. |
[3] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[4] | Xiaoye MAO, Jiabin WU, Junning ZHANG, Hu DING, Liqun CHEN. Dirac method for nonlinear and non-homogenous boundary value problems of plates[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 15-38. |
[5] | Yong WANG, Peili WANG, Haodong MENG, Liqun CHEN. Dynamic performance and parameter optimization of a half-vehicle system coupled with an inerter-based X-structure nonlinear energy sink[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 85-110. |
[6] | Hu DING, J. C. JI. Vibration control of fluid-conveying pipes: a state-of-the-art review[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1423-1456. |
[7] | Yang JIN, Tianzhi YANG. Enhanced vibration suppression and energy harvesting in fluid-conveying pipes[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1487-1496. |
[8] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[9] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
[10] | Yunping ZHAO, Xiuhui HOU, Kai ZHANG, Zichen DENG. Symplectic analysis for regulating wave propagation in a one-dimensional nonlinear graded metamaterial[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 745-758. |
[11] | Jian'en CHEN, Jianling LI, Minghui YAO, Jun LIU, Jianhua ZHANG, Min SUN. Nonreciprocity of energy transfer in a nonlinear asymmetric oscillator system with various vibration states[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 727-744. |
[12] | Shengtao ZHANG, Jiaxi ZHOU, Hu DING, Kai WANG, Daolin XU. Fractional nonlinear energy sinks[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 711-726. |
[13] | Jihou YANG, Weixing ZHANG, Xiaodong YANG. Integrated device for multiscale series vibration reduction and energy harvesting[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2227-2242. |
[14] | Luke ZHAO, Feng JIN, Zhushan SHAO, Wenjun WANG. Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2039-2056. |
[15] | H. ASGHARI, H. TOPOL, B. MARKERT, J. MERODIO. Application of the extended Fourier amplitude sensitivity testing (FAST) method to inflated, axial stretched, and residually stressed cylinders[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2139-2162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||