[1] Barthlott, W. and Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1-8(1997)
[2] Bechert, D. W., Bruse, M., and Hage, W. Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in Fluids, 28(5), 403-412(2000)
[3] Cottin-Bizonne, C., Barrat, J. L., Bocquet, L., and Charlaix, E. Low-friction flows of liquid at nanopatterned interfaces. Nature Materials, 2(4), 237-240(2003)
[4] Gao, X. and Jiang, L. Biophysics:water-repellent legs of water striders. nature, 432(7013), 36-36(2004)
[5] Marmur, A. Soft contact:measurement and interpretation of contact angles. Soft Matter, 2(1), 12-17(2005)
[6] Chen, S. and Doolen, G. D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30(1), 329-364(1998)
[7] Succi, S. Lattice Boltzmann across scales:from turbulence to DNA translocation. The European Physical Journal B, 64(3), 471-479(2008)
[8] Rothman, D. H. and Keller, J. M. Immiscible cellular-automaton fluids. Journal of Statistical Physics, 52(3), 1119-1127(1988)
[9] Gunstensen, A. K., Rothman, D. H., Zaleski, S., and Zanetti, G. Lattice Boltzmann model of immiscible fluids. Physical Review A, 43(8), 4320-4327(1991)
[10] Alexander, F. J., Chen, S., and Grunau, D. W. Hydrodynamic spinodal decomposition:growth kinetics and scaling functions. Physical Review B, 48(1), 634-637(1993)
[11] Shan, X. and Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 47(3), 1815-1819(1993)
[12] Shan, X. and Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Physical Review E, 49(4), 2941-2948(1994)
[13] Swift, M. R., Orlandini, E., Osborn, W. R., and Yeomans, J. M. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Review E, 54(5), 5041-5052(1996)
[14] Swift, M. R., Osborn, W. R., and Yeomans, J. M. Lattice Boltzmann simulation of non-ideal fluids. Physical Review Letters, 75(5), 830-833(1995)
[15] Zheng, L., Zheng, S., and Zhai, Q. Lattice Boltzmann equation method for the Cahn-Hilliard equation. Physical Review E, 91(1), 013309(2015)
[16] Liang, H., Shi, B. C., Guo, Z. L., and Chai, Z. H. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Physical Review E, 89(5), 053320(2014)
[17] Inamuro, T., Ogata, T., Tajima, S., and Konishi, N. A lattice Boltzmann method for incompressible two-phase flows with large density differences. Journal of Computational Physics, 198(2), 628-644(2004)
[18] Lee, T. and Liu, L. Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. Journal of Computational Physics, 229(20), 8045-8063(2010)
[19] Guo, Z. L. and Zheng, C. G. Theory and Applications of Lattice Boltzmann Method, Science Press, Beijing (2009)
[20] Inamuro, T., Konishi, N., and Ogino, F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Computer Physics Communications, 129(1), 32-45(2000)
[21] Kalarakis, A. N., Burganos, V. N., and Payatakes, A. C. Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics. Physical Review E, 65(2), 056702(2002)
[22] He, X., Chen, S., and Zhang, R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. Journal of Computational Physics, 152(2), 642-663(1999)
[23] He, X., Zhang, R., Chen, S., and Doolen, G. D. On the three-dimensional Rayleigh-Taylor instability. Physics of Fluids, 11(5), 1143-1152(1999)
[24] Li, Q., Luo, K. H., Kang, Q. J., He, Y. L., Chen, Q., and Liu, Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 52, 62-105(2015)
[25] Zhang, R., He, X., and Chen, S. Interface and surface tension in incompressible lattice Boltzmann multiphase model. Computer Physics Communications, 129(1), 121-130(2000)
[26] Chen, L., Kang, Q., Mu, Y., He, Y. L., and Tao, W. Q. A critical review of the pseudopotential multiphase lattice Boltzmann model:methods and applications. International Journal of Heat and Mass Transfer, 76(6), 210-236(2014)
[27] Shan, X. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Physical Review E, 73(4), 047701(2006)
[28] Yuan, P. and Schaefer, L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 18(4), 042101(2006)
[29] Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K., and Toschi, F. Generalized lattice Boltzmann method with multirange pseudopotential. Physical Review E, 75(2), 026702(2007)
[30] Yu, Z. and Fan, L. S. Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Physical Review E, 82(4), 046708(2010)
[31] He, X., Shan, X., and Doolen, G. D. Discrete Boltzmann equation model for nonideal gases. Physical Review E, 57(1), 13-16(1998)
[32] Lee, T. and Lin, C. L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. Journal of Computational Physics, 206(1), 16-47(2005)
[33] Connington, K. and Lee, T. A review of spurious currents in the lattice Boltzmann method for multiphase flows. Journal of Mechanical Science and Technology, 26(12), 3857-3863(2012)
[34] Lee, T. and Fischer, P. F. Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Physical Review E, 74(4), 046709(2006)
[35] Yiotis, A. G., Psihogios, J., Kainourgiakis, M. E., Papaioannou, A., and Stubos, A. K. A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 300(1-2), 35-49(2007)
[36] Wang, L., Huang, H. B., and Lu, X. Y. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method. Physical Review E, 87(1), 013301(2013)
[37] Zhang, R. L., Di, Q. F., Wang, X. L., and Gu, C. Y. Numerical study of wall wettabilities and topography on drag reduction effect in micro-channel flow by lattice Boltzmann method. Journal of Hydrodynamics Seires B, 22(3), 366-372(2010)
[38] Zhang, R. L., Di, Q. F., Wang, X. L., Ding, W. P., and Gong, W. Numerical study of the relationship between apparent slip length and contact angle by lattice Boltzmann method. Journal of Hydrodynamics Seires B, 24(4), 535-540(2012)
[39] Kuzmin, A. Multiphase Simualtions with Lattice Boltzmann Shceme, Ph.D. dissertation, Unversity of Calgary (2009)
[40] Ding, H. and Spelt, P. D. M. Wetting condition in diffuse interface simulations of contact line motion. Physical Review E, 75(4), 046708(2007)
[41] Qian, Y. H., D'HumiYres, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17(6), 479-484(1992)
[42] Hu, A., Li, L., Uddin, R., and Liu, D. Contact angle adjustment in equation-of-state-based pseudopotential model. Physical Review E, 93(5), 053307(2016)
[43] Succi, S. Lattice Boltzmann 2038. Europhysics Letters, 109(5), 50001(2015) |