[1] BOEHLER, J. P. On irreducible representations for isotropic scalar functions. Journal of Applied Mathematics and Mechanics, 57(6), 323-327(1977) [2] BOEHLER, J. P., KIRILLOV, A. A., and ONAT, E. T. On the polynomial invariants of the elasticity tensor. Journal of Elasticity, 34(2), 97-110(1994) [3] PENNISI, S. and TROVATO, M. On the irreducibility of Professor G. F. Smith's representations for isotropic functions. International Journal of Engineering Science, 25(8), 1059-1065(1987) [4] SMITH, G. F. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. International Journal of Engineering Science, 9(10), 899-916(1971) [5] SMITH, G. F. and BAO, G. Isotropic invariants of traceless symmetric tensors of orders three and four. International Journal of Engineering Science, 35(15), 1457-1462(1997) [6] SPENCER, A. J. M. A note on the decomposition of tensors into traceless symmetric tensors. International Journal of Engineering Science, 8(6), 475-481(1970) [7] WANG, C. C. A new representation theorem for isotropic functions:an answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions. Archive for Rational Mechanics and Analysis, 36(3), 166-197(1970) [8] ZHENG, Q. S. On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. International Journal of Engineering Science, 31(7), 1013-1024(1993) [9] ZHENG, Q. S. Theory of representations for tensor functions——a unified invariant approach to constitutive equations. Applied Mechanics Reviews, 47(11), 545-587(1994) [10] ZHENG, Q. S. Two-dimensional tensor function representations involving third-order tensors. Archives of Mechanics, 48(4), 659-673(1996) [11] ZHENG, Q. S. and BETTEN, J. On the tensor function representations of 2nd-order and 4th-order tensors, part I. Journal of Applied Mathematics and Mechanics, 75(4), 269-281(1995) [12] CHEN, Y., QI, L., and ZOU, W. Irreducible function bases of isotropic invariants of third and fourth order symmetric tensors. arXiv:1712.02087v3, Preprint (2018) [13] CHEN, Z., LIU, J., QI, L., ZHENG, Q. S., and ZOU, W. An irreducible function basis of isotropic invariants of a third order three-dimensional symmetric tensor. Journal of Mathematical Physics, 59, 081703(2018) [14] AUFFRAY, N. and ROPARS, P. Invariant-based reconstruction of bidimensional elasticity tensors. International Journal of Solids and Structures, 87, 183-193(2016) [15] HILBERT, D. Theory of Algebraic Invariants, Cambridge University Press, Cambridge (1993) [16] OLIVE, M. and AUFFRAY, N. Isotropic invariants of a completely symmetric third-order tensor. Journal of Mathematical Physics, 55(9), 092901(2014) [17] STURMFELS, B. Algorithms in Invariant Theory, Springer Science & Business Media, Vienna (2008) [18] OLIVE, M., KOLEV, B., and AUFFRAY, N. A minimal integrity basis for the elasticity tensor. Archive for Rational Mechanics and Analysis, 226(1), 1-31(2017) [19] HAUSSÜHL, S. Physical Properties of Crystals:An Introduction, John Wiley & Sons, New Jersey, 205-207(2008) [20] HALL, E. On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3), 287-292(1879) |