[1] YAKUSHEVICH, L. V. Nonlinear Physics of DNA, John Wiley & Sons, New York (2004) [2] KRATKY, O. and POROD, G. Rötgenuntersuchung gelöter fadenmoleküe. Recueil des Travaux Chimiques des Pays-Bas, 68, 1106-1122(1949) [3] ROUSE, P. E., JR. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. The Journal of Chemical Physics, 21, 1272-1280(1953) [4] ZIMM, B. H. Dynamics of polymer molecules in dilute solution:viscoelasticity, flow birefringence and dielectric loss. The Journal of Chemical Physics, 24, 269-278(1956) [5] FREIRE, J. J. and GARCIADELATORRE, J. A. Generalized bead and spring model for the dynamics of DNA in solution-application to the intrinsic-viscosity. Macromolecules, 12, 971-975(1979) [6] ENGLANDER, S., KALLENBACH, N., HEEGER, A., KRUMHANSL, J., and LITWIN, S. Nature of the open state in long polynucleotide double helices:possibility of soliton excitations. Proceedings of the National Academy of Sciences, 77, 7222-7226(1980) [7] YOMOSA, S. Soliton excitations in deoxyribonucleic acid (DNA) double helices. Physical Review A, 27, 2120-2125(1983) [8] YOMOSA, S. Solitary excitations in deoxyribonuclei acid (DNA) double helices. Physical Review A, 30, 474-480(1984) [9] YAKUSHEVICH, L. V. Nonlinear DNA dynamics:a new model. Physics Letters A, 136, 413-417(1989) [10] PEYRARD, M. and BISHOP, A. R. Statistical mechanics of a nonlinear model for DNA denaturation. Physical Review Letters, 62, 2755-2758(1989) [11] FORINASH, K., BISHOP, A. R., and LOMDAHL, P. S. Nonlinear dynamics in a double-chain model of DNA. Physical Review B, 43, 10743-10750(1991) [12] ATEN, J. A., STAP, J., KRAWCZYK, P. M., VAN OVEN, C. H., HOEBE, R. A., ESSERS, J., and KANAAR, R. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science, 303, 92-95(2004) [13] DERKS, G. and GAETA, G. A minimal model of DNA dynamics in interaction with RNApolymerase. Physica D:Nonlinear Phenomena, 240, 1805-1817(2011) [14] DERKS, G. Stability of fronts in inhomogeneous wave equations. Acta Applicandae Mathematicae, 137, 61-78(2015) [15] ABDEL-GAWAD, H. I., TANTAWY, M., and OSMAN, M. S. Dynamic of DNA's possible impact on its samage. Mathematical Methods in the Applied Sciences, 39, 168-176(2016) [16] YAKUSHEVICH, L. On the mechanical analogue of DNA. Journal of Biological Physics, 43, 113-125(2017) [17] MVOGO, A., BEN-BOLIE, G. H., and KOFANE, T. C. Fractional nonlinear dynamics of DNA breathing. Communications in Nonlinear Science and Numerical Simulation, 48, 258-269(2017) [18] MVOGO, A. and KOFANE, T. C. Fractional formalism to DNA chain and impact of the fractional order on breather dynamics. Chaos, 26, 123120(2016) [19] OKALY, J. B., MVOGO, A., WOULACHE, R. L., and KOFANE, T. C. Nonlinear dynamics of damped DNA systems with long-range interactions. Communications in Nonlinear Science and Numerical Simulation, 55, 183-193(2017) [20] TAGAMI, S., SEKINE, S., KUMAREVEL, T., HINO, N., MURAYAMA, Y., KAMEGAMORI, S., YAMAMOTO, M., SAKAMOTO, K., and YOKOYAMA, S. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. nature, 468, 978-982(2010) [21] PHILIPS, S. J., CANALIZO-HERNANDEZ, M., YILDIRIM, I., SCHATZ, G. C., MONDRAGON, A., and O'HALLORAN, T. V. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science, 349, 877-881(2015) [22] SINGH, R. K., SASIKALA, W. D., and MUKHERJEE, A. Molecular origin of DNA kinking by transcription factors. Journal of Physical Chemistry B, 119, 11590-11596(2015) [23] SANDMANN, A. and STICHT, H. Probing the role of intercalating protein sidechains for kink formation in DNA. PLoS One, 13, e0192605(2018) [24] ZDRAVKOVIC, S., SATARIC, M. V., and DANIEL, M. Kink solitons in DNA. International Journal of Modern Physics B, 27, 1350184(2013) [25] VANITHA, M. and DANIEL, M. Internal nonlinear dynamics of a short lattice DNA model in terms of propagating kink-antikink solitons. Physical Review E, 85, 041911(2012) [26] FENG, K. On difference schemes and symplectic geometry. Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, 42-58(1984) [27] PENG, H. J., GAO, Q., WU, Z. G., and ZHONG, W. X. Symplectic multi-level method for solving nonlinear optimal control problem. Applied Mathematics and Mechanics (English Edition), 31(10), 1251-1260(2010) https://doi.org/10.1007/s10483-010-1358-6 [28] WU, F. and ZHONG, W. X. Constrained Hamilton variational principle for shallow water problems and Zu-class symplectic algorithm. Applied Mathematics and Mechanics (English Edition), 37(1), 1-14(2016) https://doi.org/10.1007/s10483-016-2051-9 [29] BRIDGES, T. J. Multi-symplectic structures and wave propagation. Mathematical Proceedings of the Cambridge Philosophical Society, 121, 147-190(1997) [30] BRIDGES, T. J. and REICH, S. Multi-symplectic spectral discretizations for the ZakharovKuznetsov and shallow water equations. Physica D:Nonlinear Phenomena, 152-153, 491-504(2001) [31] HU, W. P., DENG, Z. C., and ZHANG, Y. Multi-symplectic method for peakon-antipeakon collision of quasi-Degasperis-Procesi equation. Computer Physics Communications, 185, 2020-2028(2014) [32] LI, H. C., SUN, J. Q., and QIN, M. Z. New explicit multi-symplectic scheme for nonlinear wave equation. Applied Mathematics and Mechanics (English Edition), 35(3), 369-380(2014) https://doi.org/10.1007/s10483-014-1797-6 [33] HU, W. P., DENG, Z. C., HAN, S. M., and ZHANG, W. R. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. Journal of Computational Physics, 235, 394-406(2013) [34] HU, W. P., WANG, Z., ZHAO, Y. P., and DENG, Z. C. Symmetry breaking of infinite-dimensional dynamic system. Applied Mathematics Letters, 103, 106207(2020) [35] HU, W. P., DENG, Z. C., WANG, B., and OUYANG, H. J. Chaos in an embedded single-walled carbon nanotube. Nonlinear Dynamics, 72, 389-398(2013) [36] HU, W. P. and DENG, Z. C. Chaos in embedded fluid-conveying single-walled carbon nanotube under transverse harmonic load series. Nonlinear Dynamics, 79, 325-333(2015) [37] HU, W. P., SONG, M. Z., DENG, Z. C., ZOU, H. L., and WEI, B. Q. Chaotic region of elastically restrained single-walled carbon nanotube. Chaos, 27, 023118(2017) [38] HU, W. P., LI, Q. J., JIANG, X. H., and DENG, Z. C. Coupling dynamic behaviors of spatial flexible beam with weak damping. International Journal for Numerical Methods in Engineering, 111, 660-675(2017) [39] HU, W. P., DENG, Z. C., and YIN, T. T. Almost structure-preserving analysis for weakly linear damping nonlinear Schrödinger equation with periodic perturbation. Communications in Nonlinear Science and Numerical Simulation, 42, 298-312(2017) [40] HU, W. P., SONG, M. Z., and DENG, Z. C. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system. Journal of Sound and Vibration, 412, 59-73(2018) [41] HU, W. P., SONG, M. Z., DENG, Z. C., YIN, T. T., and WEI, B. Q. Axial dynamic buckling analysis of embedded single-walled carbon nanotube by complex structure-preserving method. Applied Mathematical Modelling, 52, 15-27(2017) [42] HU, W. P., SONG, M. Z., YIN, T. T., WEI, B. Q., and DENG, Z. C. Energy dissipation of damping cantilevered single-walled carbon nanotube oscillator. Nonlinear Dynamics, 91, 767-776(2018) [43] HU, W. P., YU, L. J., and DENG, Z. C. Minimum control energy of spatial beam with assumed attitude adjustment target. Acta Mechanica Solida Sinica, 33, 51-60(2020) [44] HU, W. P. and DENG, Z. C. Non-sphere perturbation on dynamic behaviors of spatial flexible damping beam. Acta Astronautica, 152, 196-200(2018) [45] BRIDGES, T. J. and REICH, S. Numerical methods for Hamiltonian PDEs. Journal of Physics A-Mathematical and General, 39, 5287-5320(2006) [46] HU, W. P., DENG, Z. C., HAN, S. M., and FAN, W. The complex multi-symplectic scheme for the generalized Sinh-Gordon equation. Science in China Series G:Physics, Mechanics and Astronomy, 52, 1618-1623(2009) [47] REICH, S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. Journal of Computational Physics, 157, 473-499(2000) [48] HONG, J. L., LIU, H. Y., and SUN, G. The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. Mathematics of Computation, 75, 167-181(2006) [49] HONG, J. L. and LI, C. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. Journal of Computational Physics, 211, 448-472(2006) |