[1] XIA, Y., YANG, P., SUN, Y., WU, Y., MAYERS, B., GATES, B., YIN, Y., KIM, F., and YAN, H. One-dimensional nanostructures:synthesis, characterization, and applications. Advanced Materials, 15, 353-389(2003) [2] YANG, P., YAN, R., and FARDY, M. Semiconductor nanowire:what is next? Nano Letters, 10, 1529-1536(2010) [3] HSU, C. L. and CHANG, S. J. Doped ZnO 1D nanostructures:synthesis, properties, and photodetector application. Small, 10, 4562-4585(2014) [4] LUO, Y., CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mechanica Solida Sinica, 31, 127-140(2018) [5] LI, P., JIN, F., and MA, J. One-dimensional dynamic equations of a piezoelectric semiconductor beam with a rectangular cross section and their application in static and dynamic characteristic analysis. Applied Mathematics and Mechanics (English Edition), 39(5), 685-702(2018) https://doi.org/10.007/s10483-018-2325-6 [6] LIANG, Y. X., YANG, W. L., and YANG, J. S. Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force. Acta Mechanica Solida Sinica, 32, 688-697(2019) [7] FAN, S. Q., HU, Y. T., and YANG, J. S. Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber. Applied Mathematics and Mechanics (English Edition), 40(5), 591-600(2019) https://doi.org/10.1007/s10483-019-2481-6 [8] ZAMFIRESCU, M., KAVOKIN, A., GIL, B., and MALPUECH, G. ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Physical Review B, 65, 161205(2002) [9] KLINGSHIRN, C., HAUSCHILD, R., PRILLER, H., DECKER, M., ZELLER, J., and KALT, H. ZnO rediscovered-once again!? Superlattices and Microstructures, 38, 209-222(2005) [10] GOANO, M., BERTAZZI, F., PENNA, M., and BELLOTTI, E. Electronic structure of wurtzite ZnO:nonlocal pseudopotential and ab initio calculations. Journal of Applied Physics, 102, 83709(2007) [11] HANADA, T. Basic properties of ZnO, GaN, and related materials. Advances in Materials Research, 12, 1-19(2009) [12] JANOTTI, A. and VAN, C. G. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 72, 126501(2009) [13] JANG, D., YOON, J., KIM, D., MOON, Y. S., KIM, K. H., and HA, J. S. Current generation of vertically aligned ZnO nanowires by photo-induced deformation of a matrix polymer. Journal of Materials Chemistry C, 1, 7191-7196(2013) [14] KANG, J. H., EBAID, M., JEONG, D. K., LEE, J. K., and RYU, S. W. Efficient energy harvesting of a GaN p-n junction piezoelectric generator through suppressed internal field screening. Journal of Materials Chemistry C, 4, 3337-3341(2016) [15] HAN, X., CHEN, M. X., PAN., C. F., and WANG, Z. L. Progress in piezo-phototronic effect enhanced photodetectors. Journal of Materials Chemistry C, 4, 11341-11354(2016) [16] CHEN, Y. X., LIU, J. X., LIU, K. L., SI, J. J., DING, Y. R., LI, L. Y., LV, T. R., LIU, J. P., and FU, L. GaN in different dimensionalities:properties, synthesis, and applications. Materials Science and Engineering:R:Reports, 138, 60-84(2019) [17] ANDREEV, A. D. and O'REILLY, E. P. Theory of the electronic structure of GaN/AlN hexagonal quantum dots. Physical Review B, 62, 15851(2000) [18] RANJAN, V., ALLAN, G., PRIESTER, C., and DELERUE, C. Self-consistent calculations of the optical properties of GaN quantum dots. Physical Review B, 68, 115305(2003) [19] PAN, E., ZOU, Y., CHUNG, P. W., and ALBRECHT, J. D. Strain-induced variations of electronic energy band edges of embedded semiconductor quantum dots in half-space substrates. Journal of Applied Physics, 106, 073504(2009) [20] WANG, Z. L. Piezotronics and Piezo-phototronics, The Science Publishing Company, Beijing (2014) [21] SAHOO, T., JANG, L. W., JEON, D. W., YU, Y. T., and LEE, I. H. Hydrothermal growth of single crystal ZnO nanorods on surface-modified graphite. Electronic Materials Letters, 9, 715-718(2013) [22] SHIN, S. H., LEE, M. H., JUNG, J. Y., SEOL, J. H., and NAH, J. Piezoelectric performance enhancement of ZnO flexible nanogenerator by a CuO-ZnO p-n junction formation. Journal of Materials Chemistry C, 1, 8103-8107(2013) [23] ÖZGÜR, Ü, ALIVOV, Y. I., LIU, C., TEKE, A., RESHCHIKOV, M. A., DOGAN, S., and AVRUTIN, V. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98, 41301(2005) [24] PARK, S. H., HONG, W. P., and KIM, J. J. Piezoelectric and spontaneous polarization effects on exciton binding energy and light emission properties of wurtzite ZnO/MgO quantum dots. Solid State Communications, 261, 21-25(2017) [25] YILDIRIM, H. Exciton binding and excitonic transition energies in wurtzite Zn1-xCdxO/ZnO quantum wells. Superlattices and Microstructures, 120, 344-352(2018) [26] GAO, Y. F. and WANG, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Letters, 9, 1103-1110(2009) [27] FAN, S. Q., LIANG, Y. X., XIE, J. M., and HU, Y. T. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance:part I-linearized analysis. Nano Energy, 40, 82-87(2017) [28] LIANG, Y. X., FAN, S. Q., CHEN, X. D., and HU, Y. T. Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction. Beilstein Journal of Nanotechnology, 9, 1917-1925(2018) [29] ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. Bending of a Cantilever Piezoelectric Semiconductor Fiber Under an End Force, Springer, Switzerland, 261-278(2018) [30] CHOI, M. Y., CHOI, D., JIN, M. J., KIM, I., KIM, S. H., CHOI, J. Y., LEE, S. Y., KIM, J. M., and KIM, S. W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Advanced Materials, 21, 2185-2189(2009) [31] SICHANI, S. B., NIKFARJAM, A., and HAJGHASSEM, H. A novel miniature planar gas ionization sensor based on selective growth of ZnO nanowires. Sensors and Actuators A:Physical, 288, 55-60(2019) [32] FAN, S. Q., YANG, W. L., and HU, Y. T. Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading. Nano Energy, 52, 416-421(2018) [33] LEW, L. C., VOON, Y., and WILLATZEN, M. Electromechanical phenomena in semiconductor nanostructures. Journal of Applied Physics, 109, 031101(2011) [34] JIN, L. and LI, L. Quantum simulation of ZnO nanowire piezotronics. Nano Energy, 15, 776-781(2015) [35] YUMAK, A., YAHSI, U., PETKOVA, P., and BOUBAKER, K. Europium doping-induced stability and quantum confinement effect in ZnO quantum well wires QWW:electronic structure calculation and material structural investigation in terms of band-gap shift. Materials Letters, 164, 89-92(2016) [36] YEO, Y. C., CHONG, T. C., LI, M. F., and FAN, W. J. Analysis of optical gain and threshold current density of wurtzite InGaN/GaN/AlGaN quantum well lasers. Journal of Applied Physics, 84, 1813-1819(1998) [37] PARK, S. H. and CHUANG, S. L. Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Physical Review B, 59, 4725-4737(1999) [38] KURDI, M. E., FISHMAN, G., SAUVAGE, S., and BOUCAUD, P. Band structure and optical gain of tensile-strained germanium based on a 30 band k·p formalism. Journal of Applied Physics, 107, 013710(2010) [39] NAVON, D. H. Semiconductor Microdevices and Materials, CBS College Publishing, New York (1986) [40] KUMAGAI, M., CHUANG, S. L., and ANDO, H. Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors. Physical Review B, 57, 15303-15314(1998) [41] BIR, G. L. and PIKUS, G. E. Symmetry and Strain-Induced Effects in Semiconductors, Wiley, New York (1974) [42] WINKELNKEMPER, M., SCHLIWA, A., and BIMBERG, D. Interrelation of structural and electronic properties in InxGa1-xN/GaN quantum dots using an eight-band kp model. Physical Review B, 74, 155322-155334(2006) [43] OHTOMOA, A. and KAWASAKI, M. Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices. Applied Physics Letters, 75, 980-982(1999) [44] SHTEPLIUK, I., KHRANOVSKYY, V., and YAKIMOVA, R. Effect of c-axis inclination angle on the properties of ZnO/Zn1-xCdxO/ZnO quantum wells. Thin Solid Films, 603, 139-148(2016) |